Startseite Enzymatic synthesis and analytical monitoring of terpene ester by 1H NMR spectroscopy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Enzymatic synthesis and analytical monitoring of terpene ester by 1H NMR spectroscopy

  • Dipak Patil EMAIL logo , Debabrata Das und Ahindra Nag
Veröffentlicht/Copyright: 30. Dezember 2010
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Terpene esters of fatty acids have potential applications in food, cosmetic, and pharmaceutical industries. The present study focuses on the synthesis of terpene esters of long chain fatty acids catalyzed by Candida antarctica lipase B. Different parameters like temperature, solvent, and enzyme concentration for the esterification of terpene alcohols (geraniol and citronellol) with oleic acid were studied. Maximum conversion (98 %) was found for both terpene esters at 60°C in 2,2,4-trimethylpentane as well as in dry hexane and around 95–97 % in other tested solvents. The reaction was also carried out using stearic and linoleic acid in hexane to study the effects of unsaturation in the substrate in which stearic acid showed the maximum conversion. The reaction was monitored by 1H nuclear magnetic resonance spectroscopy. Using the peak integration values of methylene protons of terpene and terpene ester of δ = 3.6 and 4.0 for citronellol and δ = 4.2 and 4.6 for geraniol, respectively, percentage conversions of each of the esters were calculated.

[1] Chatterjee, T., & Bhattacharyya, D. K. (1998). Synthesis of terpene esters by an immobilized lipase in a solvent-free system. Biotechnology Letters, 20, 865–868. DOI: 10.1023/A:1005315609952. http://dx.doi.org/10.1023/A:100531560995210.1023/A:1005315609952Suche in Google Scholar

[2] Costa Neto, P. R., Balparda Caro, M. S., Mazzuco, L. M., & Nascimento, M. G. (2004). Quantification of soybean oil ethanolysis with 1H NMR. Journal of the American Oil Chemists’ Society, 81, 1111–1114. DOI: 10.1007/s11746-004-1026-0. http://dx.doi.org/10.1007/s11746-004-1026-010.1007/s11746-004-1026-0Suche in Google Scholar

[3] Croteau, R., (1980). The biosynthesis of terpene compounds. In R. Croteau (Ed.), Fragrance and flavor substances (pp. 13–14). Pattensen, Germany: D&PS Verlag. Suche in Google Scholar

[4] Fernandez-Lafuente, R. (2010). Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 62, 197–212. DOI: 10.1016/j.molcatb.2009.11.010. http://dx.doi.org/10.1016/j.molcatb.2009.11.01010.1016/j.molcatb.2009.11.010Suche in Google Scholar

[5] Fernandez-Lorente, G., Palomo, J. M., Cabrera, Z., Fernandez-Lafuente, R., & Guisan, J. M. (2006). Improved catalytic properties of immobilized lipases by the presence of very low concentrations of detergents in the reaction medium. Biotechnology and Bioengineering, 97, 242–250. DOI: 10.1002/bit.21230. http://dx.doi.org/10.1002/bit.2123010.1002/bit.21230Suche in Google Scholar

[6] Gandhi, N. N. (1997). Applications of lipase. Journal of the American Oil Chemists’ Society, 74, 621–634. DOI: 10.1007/s11746-997-0194-x. http://dx.doi.org/10.1007/s11746-997-0194-x10.1007/s11746-997-0194-xSuche in Google Scholar

[7] Gelbard, G., Brès, O., Vargas, R. M., Vielfaure, F., & Schuchardt, U. F. (1995). 1H Nuclear Magnetic Resonance determination of the yield of the transesterification of rapeseed oil with methanol. Journal of the American Oil Chemists’ Society, 72, 1239–1241. DOI: 10.1007/BF02540998. http://dx.doi.org/10.1007/BF0254099810.1007/BF02540998Suche in Google Scholar

[8] Gonzalez-Navarro, H., & Braco, L. (1998). Lipase-enhanced activity in flavour ester reactions by trapping enzyme conformers in the presence of interfaces. Biotechnology and Bioengineering, 59, 122–127. DOI: 10.1002/(SICI)1097-0290(19980705)59:1〈122::AID-BIT16〉3.0.CO;2-K. http://dx.doi.org/10.1002/(SICI)1097-0290(19980705)59:1<122::AID-BIT16>3.0.CO;2-K10.1002/(SICI)1097-0290(19980705)59:1<122::AID-BIT16>3.0.CO;2-KSuche in Google Scholar

[9] Gotor-Fernández, V., Brieva, R., & Gotor, V. (2006). Lipases: Useful biocatalysts for the preparation of pharmaceuticals. Journal of Molecular Catalysis B: Enzymatic, 40, 111–120. DOI: 10.1016/j.molcatb.2006.02.010. http://dx.doi.org/10.1016/j.molcatb.2006.02.01010.1016/j.molcatb.2006.02.010Suche in Google Scholar

[10] Krings, U., & Berger, R. G. (1998). Biotechnological production of flavours and fragrances. Applied Microbiology and Biotechnology, 49, 1–8. DOI: 10.1007/s002530051129. http://dx.doi.org/10.1007/s00253005112910.1007/s002530051129Suche in Google Scholar

[11] Langrand, G., Triantaphylides, C., & Baratti, J. (1988). Lipase catalyzed formation of flavor esters. Biotechnology Letters, 10, 549–554. DOI: 10.1007/BF01027127. http://dx.doi.org/10.1007/BF0102712710.1007/BF01027127Suche in Google Scholar

[12] Mahapatra, P., Kumari, A., Garlapati, V. K., Banerjee, R., & Nag, A. (2009a). Enzymatic synthesis of fruit flavor esters by immobilized lipase from Rhizopus oligosporus optimized with response surface methodology. Journal of Molecular Catalysis B: Enzymatic, 60, 57–63. DOI: 10.1016/j.molcatb.2009.03.010. http://dx.doi.org/10.1016/j.molcatb.2009.03.01010.1016/j.molcatb.2009.03.010Suche in Google Scholar

[13] Mahapatra, P., Kumari, A., Kumar, G. V., Banerjee, R., & Nag, A. (2009b). Kinetics of solvent-free geranyl acetate synthesis by Rhizopus oligosporus NRRL 5905 lipase immobilized on to cross-linked silica. Biocatalysis and Biotransformation, 27, 124–130. DOI: 10.1080/10242420802583366. http://dx.doi.org/10.1080/1024242080258336610.1080/10242420802583366Suche in Google Scholar

[14] Mattson, F. H., & Grundy, S. M. (1985). Comparison of effects of dietary saturated, monounsaturated, and polyunsaturated fatty acids on plasma lipids and lipoproteins in man. Journal of Lipid Research, 26, 194–202. 10.1016/S0022-2275(20)34389-3Suche in Google Scholar

[15] Morgenstern, M., Cline, J., Meyer, S., & Cataldo, S. (2006). Determination of the kinetics of biodiesel production using proton Nuclear magnetic resonance spectroscopy (1H NMR). Energy & Fuels, 20, 1350–1353. DOI: 10.1021/ef0503764. http://dx.doi.org/10.1021/ef050376410.1021/ef0503764Suche in Google Scholar

[16] Mukherjee, K. D., & Kiewitt, I. (1998). Substrate specificity of lipases in protease preparations. Journal of Agricultural and Food Chemistry, 46, 2427–2432. DOI: 10.1021/jf971010v. http://dx.doi.org/10.1021/jf971010v10.1021/jf971010vSuche in Google Scholar

[17] Palomo, J. M., Fernández-Lorente, G., Mateo, C., Fuentes, M., Fernández-Lafuente, R., & Guisan, J. M. (2002). Modulation of the enantioselectivity of Candida antarctica B lipase via conformational engineering: kinetic resolution of (±)-α-hydroxy-phenylacetic acid derivatives. Tetrahedron: Asymmetry, 13, 1337–1345. DOI: 10.1016/S0957-4166(02)00325-7. http://dx.doi.org/10.1016/S0957-4166(02)00325-710.1016/S0957-4166(02)00325-7Suche in Google Scholar

[18] Patil, D., De Leonardis, A., & Nag, A. (2010). Synthesis of biosurfactants from natural resources. Journal of Food Biochemistry. DOI: 10.1111/j.1745-4514.2010.00414.x. (In press) 10.1111/j.1745-4514.2010.00414.xSuche in Google Scholar

[19] Patil, D., Nag, S., Nag, A., & Basak, A. (2008). Comparison of catalytic activities between esterase and lipase in the synthesis of drugs and flavor and amide compounds. International Journal of Chemical Sciences, 6, 11–16. 10.1007/s11094-008-0106-xSuche in Google Scholar

[20] Schindler, J., & Schmid, R. D. (1982). Fragrance or aroma chemicals. Microbial synthesis and enzymatic transformation - a review. Process Biochemistry, 17, 2–8. Suche in Google Scholar

[21] Seo, C. W., Yamada, Y., & Okada, H. (1982). Synthesis of fatty acid esters by Corynebacterium sp. S-401. Agricultural and Biological Chemistry, 46, 405–409. 10.1271/bbb1961.46.405Suche in Google Scholar

[22] Sheldon, R. A. (1996). Large-scale enzymatic conversions in nonaqueous media. In A. M. P. Koskinen & A. M. Klibanov (Eds.), Enzymatic reactions in organic media (pp. 266–307). Glasgow, UK: Blackie Academic and Professional. Suche in Google Scholar

[23] Uppenberg, J., Hansen, M. T., Patkar, S., & Jones, T. A. (1994). The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure, 2, 293–308. DOI: 10.1016/S0969-2126(00)00031-9. http://dx.doi.org/10.1016/S0969-2126(00)00031-910.1016/S0969-2126(00)00031-9Suche in Google Scholar

[24] Yadav, G. D., & Lathi, P. S. (2003). Synthesis of citronellol laurate in organic media catalyzed by immobilized lipases: kinetic studies. Journal of Molecular Catalysis B: Enzymatic, 27, 113–119. DOI: 10.1016/j.molcatb.2003.10.004. http://dx.doi.org/10.1016/j.molcatb.2003.10.00410.1016/j.molcatb.2003.10.004Suche in Google Scholar

[25] Zaks, A., & Klibanov, A. M. (1985). Enzyme-catalyzed processes in organic solvents. Proceedings of the National Academy of Sciences of the United States of America, 82, 3192–3196. http://dx.doi.org/10.1073/pnas.82.10.319210.1073/pnas.82.10.3192Suche in Google Scholar PubMed PubMed Central

[26] Zeng, J. Q., Zhang, Y. M., Liu, L. M., & Zhang, J. C. (2000). The continuous reaction-separation process for the lipasecatalyzed synthesis of citronellyl oleate in supercritical CO2. Chinese Journal of Organic Chemistry, 20, 195–197. Suche in Google Scholar

Published Online: 2010-12-30
Published in Print: 2011-2-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 15.10.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0077-8/html?lang=de
Button zum nach oben scrollen