Home Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers
Article
Licensed
Unlicensed Requires Authentication

Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers

  • Witold Musial EMAIL logo , Vanja Kokol , Tivadar Fecko and Bojana Voncina
Published/Copyright: September 23, 2010
Become an author with De Gruyter Brill

Abstract

A number of poly(N-isopropylacrylamide) (polyNIPAM) microgels were prepared with dimethacrylate cross-linking agents of various lengths, ether and ester groups in the backbone, and pendant vinylidine functionality. These materials were characterized by examining their morphological patterns using optical and scanning electron microscopy. When ethylene glycol dimethacrylate (EGDMA) was used as a cross-linking agent, microspheres of approximately 1 μm in diameter were obtained. Diethylene glycol dimethacrylate (DEGDMA) cross-linking resulted in relatively large spherical structures (1–5 μm) as well as spherical nanostructures (200 nm). Using triethylene glycol dimethacrylate (TEGDMA) resulted in spheres with diameters between 1 μm and 3 μm. The hydrodynamic particle diameter decreased with the increasing chain length of the dimethacrylate cross-linking agents. The turbidity increased with the temperature of transition points occurring at approximately 31–32°C confirming the thermosensitivity of the obtained polymeric structures.

[1] Ankareddi, I., & Brazel, C. S. (2007). Synthesis and characterization of grafted thermosensitive hydrogels for heating activated controlled release. International Journal of Pharmaceutics, 336, 241–247. DOI: 10.1016/j.ijpharm.2006.11.065. http://dx.doi.org/10.1016/j.ijpharm.2006.11.06510.1016/j.ijpharm.2006.11.065Search in Google Scholar

[2] Arima, T., Hamada, T., & McCabe, J. F. (1995). The effects of cross-linking agents on some properties of HEMA-based resins. Journal of Dental Research, 74, 1597–1601. DOI: 10.1177/00220345950740091501. http://dx.doi.org/10.1177/0022034595074009150110.1177/00220345950740091501Search in Google Scholar

[3] Barszczewska-Rybarek, I.-M. (2009). Structure-property relationships in dimethacrylate networks based on Bis-GMA, UDMA and TEGDMA. Dental Materials, 25, 1082–1089. DOI: 10.1016/j.dental.2009.01.106. http://dx.doi.org/10.1016/j.dental.2009.01.10610.1016/j.dental.2009.01.106Search in Google Scholar

[4] Bobofchak, K. M., Tarasov, E., & Olsen, K. W. (2008). Effect of cross-linker length on the stability of hemoglobin. Biochimica et Biophysica Acta - Proteins & Proteomics, 1784, 1410–1414. DOI: 10.1016/j.bbapap.2008.01.014. http://dx.doi.org/10.1016/j.bbapap.2008.01.01410.1016/j.bbapap.2008.01.014Search in Google Scholar

[5] Brazel, C. S., & Peppas, N. A. (1996). Pulsatile and local delivery of methrombolytic and antithrombotic agents using poly(N-isopropylacrylamide-co-methacrylic acid) hydrogels. Journal of Controlled Release, 39, 57–64. DOI: 10.1016/0168-3659(95)00134-4. http://dx.doi.org/10.1016/0168-3659(95)00134-410.1016/0168-3659(95)00134-4Search in Google Scholar

[6] Brazel, C. S., & Peppas, N. A. (1994). Temperature- and pH-sensitive hydrogels for controlled release of heparin and streptoki- nase. In A. G. Mikos, R. M. Murphy, H. Bernstein, & N. A. Peppas (Eds.), Biomaterials for drug and cell delivery (pp. 211–216). Pittsburgh, PA, USA: Materials Research Society. Search in Google Scholar

[7] Çaykara, T., Kiper, S., Demirel, G., Demirci, S., & Çakanyıldırım, Q. (2007). Temperature-responsive characteristics of poly(N-isopropylacrylamide) hydrogels with macroporous structure. Polymer International, 56, 275–282. DOI: 10.1002/pi.2162. http://dx.doi.org/10.1002/pi.216210.1002/pi.2162Search in Google Scholar

[8] Ciullo, P. A. (1996). Rubber. In P. A. Ciullo (Ed.), Industrial minerals and their uses: A handbook & formulary (p. 220). New Jersey, NJ, USA: Noyes Publications. Search in Google Scholar

[9] Cornelius, V. J., Snowden, M. J., Silver, J., & Fern, G. R. (2004). A study of the binding of the biologically important hematin molecule to a novel imidazole containing poly(N-isopropylacrylamide) microgel. Reactive and Functional Polymers, 58, 165–173. DOI: 10.1016/j.reactfunct polym.2003.12.003. http://dx.doi.org/10.1016/j.reactfunctpolym.2003.12.00310.1016/j.reactfunctpolym.2003.12.003Search in Google Scholar

[10] Coughlan, D. C., & Corrigan, O. I. (2006). Drug-polymer interactions and their effect on thermoresponsive poly(N-isopropylacrylamide) drug delivery systems. International Journal of Pharmaceutics, 313, 163–174. DOI: 10.1016/j. ijpharm.2006.02.005. http://dx.doi.org/10.1016/j.ijpharm.2006.02.00510.1016/j.ijpharm.2006.02.005Search in Google Scholar PubMed

[11] Dale, J. A., & Millar, J. R. (1981). Cross-linker effectiveness in styrene copolymerization. Macromolecules, 14, 1515–1518. DOI: 10.1021/ma50006a072. http://dx.doi.org/10.1021/ma50006a07210.1021/ma50006a072Search in Google Scholar

[12] Das, M., Zhang, H., & Kumacheva, E. (2006). Microgels: Old materials with new applications. Annual Review of Material Research, 36, 117–142. DOI: 10.1146/annurev.matsci.36.011205.123513. http://dx.doi.org/10.1146/annurev.matsci.36.011205.12351310.1146/annurev.matsci.36.011205.123513Search in Google Scholar

[13] Duan, Q., Narumi, A., Miura, Y., Shen, X., Sato, S.-I., Satoh, T., & Kakuchi, T. (2006). Thermoresponsive property controlled by end-functionalization of poly(N-isopropylacrylamide) with phenyl, biphenyl, and triphenyl groups. Polymer Journal, 38, 306–310. DOI: 10.1295/polymj.38.306. http://dx.doi.org/10.1295/polymj.38.30610.1295/polymj.38.306Search in Google Scholar

[14] Ganapathy, S., Rajamohanan, P. R., Badiger, M. V., Mandhare, A. B., & Mashelkar, R. A. (2000). Proton magnetic resonance imaging in hydrogels: volume phase transition in poly(N-isopropylacrylamide). Polymer, 41, 4543–4547. DOI: 10.1016/S0032-3861(99)00615-1. http://dx.doi.org/10.1016/S0032-3861(99)00615-110.1016/S0032-3861(99)00615-1Search in Google Scholar

[15] Guerrero-Ramírez, L. G., Nuńo-Donlucas, S. M., Cesteros, L. C., & Katimea, I. (2008). Smart copolymeric nanohydrogels: Synthesis, characterization and properties. Materials Chemistry and Physics, 112, 1088–1092. DOI: 10.1016/j.matchem phys.2008.07.023. http://dx.doi.org/10.1016/j.matchemphys.2008.07.02310.1016/j.matchemphys.2008.07.023Search in Google Scholar

[16] Hamerska-Dudra, A., Bryjak, J., & Trochimczuk, A. W. (2006). Novel method of enzymes stabilization on crosslinked thermosensitive carriers. Enzyme and Microbial Technology, 38, 921–925. DOI: 10.1016/j.enzmictec.2005.08.019. http://dx.doi.org/10.1016/j.enzmictec.2005.08.01910.1016/j.enzmictec.2005.08.019Search in Google Scholar

[17] Haselgrübler, T., Amerstorfer, A., Schindler, H., & Gruber, H. J. (1995). Synthesis and applications of a new poly(ethy1ene glycol) derivative for the crosslinking of amines with thiols. Bioconjugate Chemistry, 6, 242–248. DOI: 10.1021/bc00033a002. http://dx.doi.org/10.1021/bc00033a00210.1021/bc00033a002Search in Google Scholar PubMed

[18] Hirose, Y., Amiya, T., Hirokawa, Y., & Tanaka, T. (1987). Phase transition of submicron gel beads. Macromolecules, 20, 1342–1344. DOI: 10.1021/ma00172a029. http://dx.doi.org/10.1021/ma00172a02910.1021/ma00172a029Search in Google Scholar

[19] Hoare, T., & McLean, D. (2006). Kinetic prediction of functional group distributions in thermosensitive microgels. The Journal of Physical Chemistry B, 110, 20327–20336. DOI: 10.1021/jp0643451. http://dx.doi.org/10.1021/jp064345110.1021/jp0643451Search in Google Scholar PubMed

[20] Hoare, T., & Pelton, R. (2007). Functionalized microgel swelling: Comparing theory and experiment. The Journal of Physical Chemistry B, 111, 11895–11906. DOI: 10.1021/jp072360f. http://dx.doi.org/10.1021/jp072360f10.1021/jp072360fSearch in Google Scholar PubMed

[21] Iizawa, T., Ishido, T., Gotoh, T., & Sakohara, S. (2007). Synthesis of nonporous poly(N-alkylacrylamide) gel beads by nonaqueous sedimentation polymerization. Polymer Journal, 39, 18–20. DOI: 10.1295/polymj.PJ2006097. http://dx.doi.org/10.1295/polymj.PJ200609710.1295/polymj.PJ2006097Search in Google Scholar

[22] Kim, J.-W., Utada, A. S., Fernández-Nieves, A., Hu, Z., & Weitz, D. A. (2007). Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. Angewandte Chemie International Edition, 46, 1819–1822. DOI: 10.1002/anie.200604206. http://dx.doi.org/10.1002/anie.20060420610.1002/anie.200604206Search in Google Scholar PubMed

[23] Kiritoshi, Y., & Ishihara, K. (2003). Molecular recognition of alcohol by volume phase transition of cross-linked poly(2-methacryloyloxyethyl phosphorylcholine) gel. Science and Technology of Advanced Materials, 4, 93–98. DOI: 10.1016/S1468-6996(03)00010-X. http://dx.doi.org/10.1016/S1468-6996(03)00010-X10.1016/S1468-6996(03)00010-XSearch in Google Scholar

[24] Kalagasidis Krušić, M. K., Dzunuzović, E., Trifunović, S., & Filipović, J. (2003). Semi-IPNs based on polyacrylamide and poly(itaconic acid). Polymer Bulletin, 51, 159–166. DOI: 10.1007/s00289-003-0203-7. http://dx.doi.org/10.1007/s00289-003-0203-710.1007/s00289-003-0203-7Search in Google Scholar

[25] Li, L., & Lee, L. J. (2005). Photopolymerization of HEMA/DEGDMA hydrogels in solution. Polymer, 46, 11540–11547. DOI: 10.1016/j.polymer.2005.10.051. http://dx.doi.org/10.1016/j.polymer.2005.10.05110.1016/j.polymer.2005.10.051Search in Google Scholar

[26] Lindman, S., Lynch, I., Thulin, E., Nilsson, H., Dawson, K. A., & Linse, S. (2007). Sysyematic investigation of the thermodynamics of HSA adsorption to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles. Effect of particle size and hydrophobicity. NanoLetters, 7, 914–920. DOI: 10.1021/nl062743+. 10.1021/nl062743+Search in Google Scholar PubMed

[27] Ma, X., Xi, J., Huang, X., Zhao, X., & Tang, X. (2004). Novel hydrophobically modified temperature-sensitive microgels with tunable volume-phase transition temperature. Materials Letters, 58, 3400–3404. DOI: 10.1016/j.matlet.2004.04.019. http://dx.doi.org/10.1016/j.matlet.2004.04.01910.1016/j.matlet.2004.04.019Search in Google Scholar

[28] Maeda, T., Kanda, T., Yonekura, Y., Yamamoto, K., & Aoyagi, T. (2006). Hydroxylated poly(N-isopropylacrylamide) as functional thermoresponsive materials. Biomacromolecules, 7, 545–549. DOI: 10.1021/bm050829b. http://dx.doi.org/10.1021/bm050829b10.1021/bm050829bSearch in Google Scholar PubMed

[29] Mathias, L. J., & Dickerson, C. W. (1991). Acrylate-containing oligo(ether-ester) cross-linking agents with controlled molecular weights via end-group termination. Macromolecules, 24, 2048–2053. DOI: 10.1021/ma00008a052. http://dx.doi.org/10.1021/ma00008a05210.1021/ma00008a052Search in Google Scholar

[30] Musial, W., Vincent, B., Szumny, A., & Voncina, B. (2010). Morphological characteristics of modified freeze-dried poly (N-isopropylacrylamide) microspheres studied by optical microscopy, SEM, and DLS. Chemical Papers, 64, 602–612. DOI: 10.2478/s11696-010-0041-7. http://dx.doi.org/10.2478/s11696-010-0041-710.2478/s11696-010-0041-7Search in Google Scholar

[31] Nolan, C. M., Gelbaum, L. T., & Lyon, L. A. (2006). 1H NMR investigation of thermally triggered insulin release from poly(N-isopropylacrylamide) microgels. Biomacromolecules, 7, 2918–2922. DOI: 10.1021/bm060718s. http://dx.doi.org/10.1021/bm060718s10.1021/bm060718sSearch in Google Scholar PubMed

[32] Oyerokun, F. T., & Schweizer, K. S. (2005). Thermodynamics, orientational order and elasticity of strained liquid crystalline melts and elastomers. The Journal of Physical Chemistry B, 109, 6595–6603. DOI: 10.1021/jp045646i. http://dx.doi.org/10.1021/jp045646i10.1021/jp045646iSearch in Google Scholar PubMed

[33] Pelton, R. H., & Chibante, P. (1986). Preparation of aqueous lattices with N-isopropylacrylamide. Colloids and Surfaces, 20, 247–256. DOI: 10.1016/0166-6622(86)80274-8. http://dx.doi.org/10.1016/0166-6622(86)80274-810.1016/0166-6622(86)80274-8Search in Google Scholar

[34] Ringsdorf, H., Venzmer, J., & Winnik, F. M. (1991). Fluorescence studies of hydrophobically modified poly(N-isopropylacrylamides). Macromolecules, 24, 1678–1686. DOI: 10.1021/ma00007a034. http://dx.doi.org/10.1021/ma00007a03410.1021/ma00007a034Search in Google Scholar

[35] Saunders, B. R., Laajam, N., Daly, E., Teow, S., Hu, X., & Stepto, R. (2009). Microgels: From responsive polymer colloids to biomaterials. Advances in Colloid and Interface Science, 147–148, 251–262. DOI: 10.1016/j.cis.2008.08.008. http://dx.doi.org/10.1016/j.cis.2008.08.00810.1016/j.cis.2008.08.008Search in Google Scholar

[36] Schild, H. G. (1992). Poly(N-isopropylacrylamide): experiment, theory and application. Progress in Polymer Science, 17, 163–249. DOI: 10.1016/0079-6700(92)90023-R. http://dx.doi.org/10.1016/0079-6700(92)90023-R10.1016/0079-6700(92)90023-RSearch in Google Scholar

[37] Serres, A., Baudyš, M., & Kim, S. W. (1996). Temperature and pH-sensitive polymers for human calcitonin delivery. Pharmaceutical Research, 13, 196–201. DOI: 10.1023/A:1016026711364. http://dx.doi.org/10.1023/A:101602671136410.1023/A:1016026711364Search in Google Scholar

[38] Shefer, A., Grodzinsky, A. J., Prime, K. L., & Busnel, J.-P. (1993). Novel model networks of poly(acry1ic acid): Synthesis and characterization. Macromolecules, 26, 5009–5014. DOI: 10.1021/ma00071a004. http://dx.doi.org/10.1021/ma00071a00410.1021/ma00071a004Search in Google Scholar

[39] Shen, Z., Wei, W., Zhao, Y., Ma, G., Dobashi, T., Maki, Y., Su, Z., & Wan, J. (2008). Thermosensitive polymer-conjugated albumin nanospheres as thermal targeting anti-cancer drug carrier. European Journal of Pharmaceutical Sciences, 35, 271–282. DOI: 10.1016/j.ejps.2008.07.006. http://dx.doi.org/10.1016/j.ejps.2008.07.00610.1016/j.ejps.2008.07.006Search in Google Scholar PubMed

[40] Skrabania, K., Kristen, J., Laschewsky, A. Akdemir, Ö., Hoth, A., & Lutz, J.-F. (2007). Design, synthesis, and aqueous aggregation behavior of nonionic single and multiple thermoresponsive polymers. Langmuir, 23, 84–93. DOI: 10.1021/la061509w. http://dx.doi.org/10.1021/la061509w10.1021/la061509wSearch in Google Scholar PubMed

[41] Snowden, M. J., & Vincent, B. (1992). The temperature-controlled flocculation of crosslinked latex particles. Journal of the Chemical Society, Chemical Communications, 1992, 1103–1105. DOI: 10.1039/C39920001103. http://dx.doi.org/10.1039/c3992000110310.1039/c39920001103Search in Google Scholar

[42] Soppimath, K. S., Tan, D. C.-W., & Yang, Y. Y. (2005). pH-triggered thermally responsive polymer core-shell nanoparticles for drug delivery. Advanced Materials, 17, 318–323. DOI: 10.1002/adma.200401057. http://dx.doi.org/10.1002/adma.20040105710.1002/adma.200401057Search in Google Scholar

[43] Suzuki, A. (1993). Phase transition in gels of sub-millimeter size induced by interaction with stimuli. In Advances in Polymer Science (Vol. 110), Responsive Gels: Volume Transitions II (pp. 199–240). Berlin/Heidelberg, Germany: Springer. DOI: 10.1007/BFb0021134. 10.1007/BFb0021134Search in Google Scholar

[44] Suzuki, A., & Tanaka, T. (1990). Phase transition in polymer gels induced by visible light. Nature, 346, 345–347. DOI: 10.1038/346345a0. http://dx.doi.org/10.1038/346345a010.1038/346345a0Search in Google Scholar

[45] Tanaka, F., Koga, T., & Winnik, F. (2008). Temperature-responsive polymers in mixed solvents: Competitive hydrogen bonds cause cononsolvency. Physical Review Letters, 101, 028302–1–028302–4. DOI: 10.1103/PhysRevLett.101.028302. 10.1103/PhysRevLett.101.028302Search in Google Scholar

[46] Wei, H., Zhang, X.-Z. Chen, W.-Q., Cheng, S.-X., & Zhuo, R.-X. (2007). Self-assembled thermosensitive micelles based on poly(l-lactide-star block-N-isopropylacrylamide) for drug delivery. Journal of Biomedical Materials Research Part A, 83A, 980–989. DOI: 10.1002/jbm.a.31295. http://dx.doi.org/10.1002/jbm.a.3129510.1002/jbm.a.31295Search in Google Scholar

[47] Xu, Y., Du, Y., Huang, R., & Gao, L. (2004). Preparation and modification of N-(2-hydroxyl)propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a protein carrier. Biomaterials, 24, 5015–5022. DOI: 10.1016/S0142-9612(03)00408-3. http://dx.doi.org/10.1016/S0142-9612(03)00408-310.1016/S0142-9612(03)00408-3Search in Google Scholar

[48] Zhou, Y.-M., Ishikawa, A., Okahashi, R., Uchida, K., Nemoto, Y., Nakayama, M., & Nakayama, Y. (2007). Deposition transfection technology using a DNA complex with a thermoresponsive cationic star polymer. Journal of Controlled Release, 123, 239–246. DOI: 10.1016/j.jconrel.2007.08.026. http://dx.doi.org/10.1016/j.jconrel.2007.08.02610.1016/j.jconrel.2007.08.026Search in Google Scholar PubMed

Published Online: 2010-9-23
Published in Print: 2010-12-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Chemical conjugation of biomacromolecules: A mini-review
  2. Talaromyces flavus and its metabolites
  3. Application of non-steroidal anti-inflammatory drugs for palladium determination
  4. A naked-eye, selective and sensitive chemosensor for fluoride ion
  5. Determination of catechin and epicatechin in the peel of apple varieties resistant and non-resistant to apple scab
  6. The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil
  7. Effect of pH and washing on calcium and magnesium distribution between pulp and filtrate
  8. Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
  9. Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts
  10. Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
  11. Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
  12. Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water
  13. Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers
  14. Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes
  15. Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds
  16. ZnO nanoparticles in the synthesis of AB ring core of camptothecin
  17. Novel benzopyranopyridine derivatives of 2-amino-3-formylchromone
  18. Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate
Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0065-z/html?lang=en
Scroll to top button