Abstract
Anilinium 5-sulfosalicylate was prepared and characterized by elemental analysis, and FTIR and NMR spectroscopies. It was polymerized in an aqueous solution using ammonium peroxydisulfate as an oxidant. The precipitated polyaniline 5-sulfosalicylate exhibited high thermal stability and conductivity of 0.13 S cm−1. Its mass-average molar mass and polydispersity index were determined by gel-permeation chromatography as 22,900 g mol−1 and 2.7, respectively. Elemental analysis and FTIR spectroscopy study of polyaniline 5-sulfosalicylate revealed the doping level and the oxidation state between emeraldine and protoemeraldine salt while corresponding studies of the polyaniline base indicate a small extent of the covalent bonding of 5-sulfosalicylate anions to polyaniline chains.
[1] Butler, R. A., & Bates, R. G. (1976). Double potassium salt of sulfosalicylic acid in acidimetry and pH control. Analytical Chemistry, 48, 1669–1671. DOI: 10.1021/ac50006a011. http://dx.doi.org/10.1021/ac50006a01110.1021/ac50006a011Search in Google Scholar
[2] Ćirić-Marjanović, G., Dondur, V., Milojević, M., Mojović, M., Mentus, S., Radulović, A., Vuković, Z., & Stejskal, J. (2009a). Synthesis and characterization of conducting self-assembled polyaniline nanotubes/zeolite nanocomposite. Langmuir, 25, 3122–3131. DOI: 10.1021/la8030396. http://dx.doi.org/10.1021/la803039610.1021/la8030396Search in Google Scholar
[3] Ćirić-Marjanović, G., Dragičević, Lj., Milojević, M., Mojović, M., Mentus, S., Dojčinović, B., Marjanović, B., & Stejskal, J. (2009b). Synthesis and characterization of self-assembled polyaniline nanotubes/silica nanocomposites. The Journal of Physical Chemistry B, 113, 7116–7127. DOI: 10.1021/jp900096b. http://dx.doi.org/10.1021/jp900096b10.1021/jp900096bSearch in Google Scholar
[4] Ćirić-Marjanović, G., Janošević, A., Marjanović, B., Trchova, M., Stejskal, J., & Holler, P. (2007). Chemical oxidative polymerization of dianilinium 5-sulfosalicylate. Russian Journal of Physical Chemistry A, Focus on Chemistry, 81, 1418–1424. DOI: 10.1134/S0036024407090130. http://dx.doi.org/10.1134/S003602440709013010.1134/S0036024407090130Search in Google Scholar
[5] Ćirić-Marjanović, G., Konyushenko, E. N., Trchova, M., & Stejskal, J. (2008a). Chemical oxidative polymerization of anilinium sulfate versus aniline: Theory and experiment. Synthetic Metals, 158, 200–211. DOI:10.1016/j.synthmet.2008.01.005. http://dx.doi.org/10.1016/j.synthmet.2008.01.00510.1016/j.synthmet.2008.01.005Search in Google Scholar
[6] Ćirić-Marjanović, G., Trchova, M., & Stejskal, J. (2008b). Theoretical study of the oxidative polymerization of aniline with peroxydisulfate: Tetramer formation. International Journal of Quantum Chemistry, 108, 318–333. DOI: 10.1002/qua.21506. http://dx.doi.org/10.1002/qua.2150610.1002/qua.21506Search in Google Scholar
[7] Ćirić-Marjanović, G., Trchova, M., & Stejskal, J. (2008c). The chemical oxidative polymerization of aniline in water: Raman spectroscopy. Journal of Raman Spectroscopy, 39, 1375–1387. DOI:10.1002/jrs.2007. http://dx.doi.org/10.1002/jrs.200710.1002/jrs.2007Search in Google Scholar
[8] Ćirić-Marjanović, G., Trchova, M., & Stejskal, J. (2006a). MNDO-PM3 Study of the early stages of the chemical oxidative polymerization of aniline. Collection of Czechoslovak Chemical Communications, 71, 1407–1426. DOI:10.1135/cccc20061407. http://dx.doi.org/10.1135/cccc2006140710.1135/cccc20061407Search in Google Scholar
[9] Ćirić-Marjanović, G. N., Marjanović, B. N., Popović, M. M., Panić, V. V., & Mišković-Stanković, V. B. (2006b). Anilinium 5-sulfosalicylate electropolymerization on mild steel from an aqueous solution of sodium 5-sulfosalicylate/disodium 5-sulfosalicylate. Russian Journal of Electrochemistry, 42, 1358–1364. DOI:10.1134/S1023193506120147. http://dx.doi.org/10.1134/S102319350612014710.1134/S1023193506120147Search in Google Scholar
[10] Gospodinova, N., & Terlemezyan, L. (1998). Conducting polymers prepared by oxidative polymerization: polyaniline. Progress in Polymer Science, 23, 1443–1484. DOI: 10.1016/S0079-6700(98)00008-2. http://dx.doi.org/10.1016/S0079-6700(98)00008-210.1016/S0079-6700(98)00008-2Search in Google Scholar
[11] Ha, J., & Jang, J. (2005). Chemical synthesis of highly conductive polyaniline nanoparticles and applications for magnetic carbon nanomaterials. Applied Chemistry, 9, 73–76. Search in Google Scholar
[12] Janošević, A., Ćirić-Marjanović, G., Marjanović, B., Holler, P., Trchova, M., & Stejskal, J. (2008). Synthesis and characterization of conducting polyaniline 5-sulfosalicylate nanotubes. Nanotechnology, 19, 135606. DOI: 10.1088/0957-4484/19/13/135606. http://dx.doi.org/10.1088/0957-4484/19/13/13560610.1088/0957-4484/19/13/135606Search in Google Scholar
[13] Konyushenko, E. N., Stejskal, J., Šeděnkova, I., Trchova, M., Sapurina, I., Cieslar, M., & Prokeš, J. (2006). Polyaniline nanotubes: conditions of formation. Polymer International, 55, 31–39. DOI:10.1002/pi.1899. http://dx.doi.org/10.1002/pi.189910.1002/pi.1899Search in Google Scholar
[14] Konyushenko, E. N., Trchova, M., Stejskal, J., & Sapurina, I. (2010). The role of acidity profile in the nanotubular growth of polyaniline. Chemical Papers, 64, 56–64. DOI: 10.2478/s11696-009-0101-z. http://dx.doi.org/10.2478/s11696-009-0101-z10.2478/s11696-009-0101-zSearch in Google Scholar
[15] Lee, K., Cho, S., Park, S. H., Heeger, A. J., Lee, C.-W., & Lee, S.-H. (2006). Metallic transport in polyaniline. Nature, 441, 65–68. DOI: 10.1038/nature04705. http://dx.doi.org/10.1038/nature0470510.1038/nature04705Search in Google Scholar
[16] MacDiarmid, A. G., & Epstein, A. J. (1995). Secondary doping in polyaniline. Synthetic Metals, 69, 85–92. DOI: 10.1016/0379-6779(94)02374-8. http://dx.doi.org/10.1016/0379-6779(94)02374-810.1016/0379-6779(94)02374-8Search in Google Scholar
[17] MacDiarmid, A. G., Jones, W. E., Jr., Norris, I. D., Gao, J., Johnson, A. T., Jr., Pinto, N. J., Hone, J., Han, B., Ko, F. K., Okuzaki, H., & Llaguno, M. (2001). Electrostatically-generated nanofibers of electronic polymers. Synthetic Metals, 119, 27–30. DOI: 10.1016/S0379-6779(00)00597-X. http://dx.doi.org/10.1016/S0379-6779(00)00597-X10.1016/S0379-6779(00)00597-XSearch in Google Scholar
[18] Neoh, K. G., Pun, M. Y., Kang, E. T., & Tan, K. L. (1995). Polyaniline treated with organic acids: doping characteristics and stability. Synthetic Metals, 73, 209–215. DOI: 10.1016/0379-6779(95)80018-2. http://dx.doi.org/10.1016/0379-6779(95)80018-210.1016/0379-6779(95)80018-2Search in Google Scholar
[19] Palaniappan, S., John, A., Amarnath, C. A., & Rao, V. J. (2004). Mannich-type reaction in solvent free condition using reusable polyaniline catalyst. Journal of Molecular Catalysis A: Chemical, 218, 47–53. DOI:10.1016/j.molcata.2004.04.010. http://dx.doi.org/10.1016/j.molcata.2004.04.01010.1016/j.molcata.2004.04.010Search in Google Scholar
[20] Raghunathan, A., Rangarajan, G., & Trivedi, D. C. (1996). 13C CPMAS NMR, XRD, d.c. and a.c. electrical conductivity of aromatic acids doped polyaniline. Synthetic Metals, 81, 39–47. DOI: 10.1016/0379-6779(96)80227-X. http://dx.doi.org/10.1016/0379-6779(96)80227-X10.1016/0379-6779(96)80227-XSearch in Google Scholar
[21] Smith, G., Wermuth, U. D., & Healy, P. C. (2005). Layered structures in proton-transfer compounds of 5-sulfosalicylic acid with the aromatic polyamines 2,6-diaminopyridine and 1,4-phenylenediamine. Acta Crystallographica Section C, 61, o555–o558. DOI: 10.1107/S010827010502439X. http://dx.doi.org/10.1107/S010827010502439X10.1107/S010827010502439XSearch in Google Scholar PubMed
[22] Smith, G., Wermuth, U. D., & White, J. M. (2004). Hydrogen bonding in proton-transfer compounds of 5-sulfosalicylic acid with bicyclic heteroaromatic Lewis bases. Acta Crystallographica Section C, 60, o575–o581. DOI: 10.1107/S010827010401457X. http://dx.doi.org/10.1107/S010827010401457X10.1107/S010827010401457XSearch in Google Scholar
[23] Stejskal, J., & Gilbert, R. G. (2002), Polyaniline. Preparation of a conducting polymer (IUPAC Technical Report). Pure and Applied Chemistry, 74, 857–867. DOI:10.1351/pac200274050857. 10.1351/pac200274050857Search in Google Scholar
[24] Stejskal, J., Hlavata, D., Holler, P., Trchova, M., Prokeš, J., & Sapurina, I. (2004). Polyaniline prepared in the presence of various acids: a conductivity study. Polymer International, 53, 294–300. DOI: 10.1002/pi.1406. http://dx.doi.org/10.1002/pi.140610.1002/pi.1406Search in Google Scholar
[25] Stejskal, J., Kratochvil, P., & Jenkins, A. D. (1996). The formation of polyaniline and the nature of its structures. Polymer, 37, 367–369. DOI: 10.1016/0032-3861(96)81113-X. http://dx.doi.org/10.1016/0032-3861(96)81113-X10.1016/0032-3861(96)81113-XSearch in Google Scholar
[26] Stejskal, J., Sapurina, I., Trchova, M., Konyushenko, E. N., & Holler, P. (2006). The genesis of polyaniline nanotubes. Polymer, 47, 8253–8262. DOI:10.1016/j.polymer.2006.10.007. http://dx.doi.org/10.1016/j.polymer.2006.10.00710.1016/j.polymer.2006.10.007Search in Google Scholar
[27] Stejskal, J., Trchova, M., Brožova, L., & Prokeš, J. (2009). Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites. Chemical Papers, 63, 77–83. DOI: 10.2478/s11696-008-0086-z. http://dx.doi.org/10.2478/s11696-008-0086-z10.2478/s11696-008-0086-zSearch in Google Scholar
[28] Stejskal, J., Trchova, M., Kovařova, J., Prokeš, J., & Omastova, M. (2008). Polyaniline-coated cellulose fibers decorated with silver nanoparticles. Chemical Papers, 62, 181–186. DOI: 10.2478/s11696-008-0009-z. http://dx.doi.org/10.2478/s11696-008-0009-z10.2478/s11696-008-0009-zSearch in Google Scholar
[29] Tawde, S., Mukesh, D., & Yakhmi, J. V. (2002). Redox behavior of polyaniline as influenced by aromatic sulphonate anions: cyclic voltammetry and molecular modeling. Synthetic Metals, 125, 401–413. DOI: 10.1016/S0379-6779(01)00483-0. http://dx.doi.org/10.1016/S0379-6779(01)00483-010.1016/S0379-6779(01)00483-0Search in Google Scholar
[30] Trchova, M., Šeděnkova, I., Konyushenko, E. N., Stejskal, J., Holler, P., & Ćirić-Marjanović, G. (2006). Evolution of polyaniline nanotubes: The oxidation of aniline in water. The Journal of Physical Chemistry B, 110, 9461–9468. DOI:10.1021/jp057528g. http://dx.doi.org/10.1021/jp057528g10.1021/jp057528gSearch in Google Scholar
[31] Trivedi, D. C., & Dhawan, S. K. (1993). Investigations on the effect of 5-sulfosalicylic acid on the properties of polyaniline. Synthetic Metals, 58, 309–324. DOI: 10.1016/0379-6779(93)91140-W. http://dx.doi.org/10.1016/0379-6779(93)91140-W10.1016/0379-6779(93)91140-WSearch in Google Scholar
© 2010 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Chemical conjugation of biomacromolecules: A mini-review
- Talaromyces flavus and its metabolites
- Application of non-steroidal anti-inflammatory drugs for palladium determination
- A naked-eye, selective and sensitive chemosensor for fluoride ion
- Determination of catechin and epicatechin in the peel of apple varieties resistant and non-resistant to apple scab
- The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil
- Effect of pH and washing on calcium and magnesium distribution between pulp and filtrate
- Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
- Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts
- Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
- Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
- Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water
- Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers
- Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes
- Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds
- ZnO nanoparticles in the synthesis of AB ring core of camptothecin
- Novel benzopyranopyridine derivatives of 2-amino-3-formylchromone
- Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate
Articles in the same Issue
- Chemical conjugation of biomacromolecules: A mini-review
- Talaromyces flavus and its metabolites
- Application of non-steroidal anti-inflammatory drugs for palladium determination
- A naked-eye, selective and sensitive chemosensor for fluoride ion
- Determination of catechin and epicatechin in the peel of apple varieties resistant and non-resistant to apple scab
- The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil
- Effect of pH and washing on calcium and magnesium distribution between pulp and filtrate
- Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
- Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts
- Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
- Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
- Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water
- Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers
- Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes
- Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds
- ZnO nanoparticles in the synthesis of AB ring core of camptothecin
- Novel benzopyranopyridine derivatives of 2-amino-3-formylchromone
- Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate