Startseite A novel method for N-alkylation of aliphatic amines with ethers over γ-Al2O3
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A novel method for N-alkylation of aliphatic amines with ethers over γ-Al2O3

  • Hangeng Chen EMAIL logo , Tao Zhang , Chao Qian und Xinzhi Chen
Veröffentlicht/Copyright: 6. Mai 2010
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A novel and simple method for the N-alkylation of amines with different ethers as alkylating reagents has been developed, using cheap γ-Al2O3 as the catalyst at atmospheric pressure in the temperature range of 260–320°C. For example, the reaction of equimolar amounts of morpholine and diethyl ether gave N-ethylmorpholine quantitatively. The present catalytic system is applicable to the N-alkylation of both primary and secondary amines. Since only water is generated as byproduct, the protocol proved to be eco-friendly and atom-economic.

[1] Adima, A., Bied, C., Moreau, J. J. E., & Man, M. W. C. (2004) Facile cleavage of Si.C bonds during the sol-gel hydrolysis of aminomethyltrialkoxysilanes - a new method for the methylation of primary amines. European Journal of Organic Chemistry, 2004, 2582–2588. DOI: 10.1002/ejoc.200400079. http://dx.doi.org/10.1002/ejoc.20040007910.1002/ejoc.200400079Suche in Google Scholar

[2] Baiker, A., & Kijenski, J. (1985) Catalytic synthesis of higher aliphatic amines from the corresponding alcohols. Catalysis Reviews: Science and Engineering, 27, 653–697. DOI: 10.1080/01614948508064235. http://dx.doi.org/10.1080/0161494850806423510.1080/01614948508064235Suche in Google Scholar

[3] Baiker, A., & Richarz, W. (1977) Synthesis of long chain aliphatic amines from the corresponding alcohols. Tetrahedron Letters, 18, 1937–1938. DOI: 10.1016/S0040-4039(01)83646-7. http://dx.doi.org/10.1016/S0040-4039(01)83646-710.1016/S0040-4039(01)83646-7Suche in Google Scholar

[4] Brown, A. B., & Reid, E. E. (1924) Catalytic alkylation of aniline. Journal of the American Chemical Society, 46, 1836–1839. DOI: 10.1021/ja01673a011 http://dx.doi.org/10.1021/ja01673a01110.1021/ja01673a011Suche in Google Scholar

[5] Chiappe, C., & Pieraccini, D. (2003) Direct mono-N-alkylation of amines in ionic liquids. chemoselectivity and reactivity. Green Chemistry, 5, 193–197. DOI: 10.1039/b211340f. http://dx.doi.org/10.1039/b211340f10.1039/b211340fSuche in Google Scholar

[6] Dobereiner, G. E., & Crabtree, R. H. (2010) Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chemical Reviews, 110, 682–703. DOI: 10.1021/cr900202j. http://dx.doi.org/10.1021/cr900202j10.1021/cr900202jSuche in Google Scholar PubMed

[7] Gawande, M. B., Deshpande, S. S., Satam, J. R., & Jayaram, R. V. (2007) A novel N-alkylation of amines by alkyl halides on mixed oxides at room temperature. Catalysis Communications, 8, 576–582. DOI: 10.1016/j.catcom.2006.08.011. http://dx.doi.org/10.1016/j.catcom.2006.08.01110.1016/j.catcom.2006.08.011Suche in Google Scholar

[8] Guillena, G., Ramon, D. J., & Yus, M. (2010) Hydrogen autotransfer in the N-alkylation of amines and related compounds using alcohols and amines as electrophiles. Chemical Reviews, 110, 1611–1641. DOI: 10.1021/cr9002159. http://dx.doi.org/10.1021/cr900215910.1021/cr9002159Suche in Google Scholar PubMed

[9] Guillena, G., Ramon, D. J., & Yus, M. (2007) Alcohols as electrophiles in C-C bond-forming reaction: The hydrogen autotransfer process. Angewandte Chemie International Edition, 46, 2358–2364. DOI: 10.1002/anie.200603794. http://dx.doi.org/10.1002/anie.20060379410.1002/anie.200603794Suche in Google Scholar PubMed

[10] Hamid, M. H. S. A., Slatford, P. A., & Williams, J. M. J. (2007) Borrowing hydrogen in the activation of alcohols. Advanced Synthesis & Catalysis, 349, 1555–1575. DOI: 10.1002/adsc.200600638. http://dx.doi.org/10.1002/adsc.20060063810.1002/adsc.200600638Suche in Google Scholar

[11] Hamid, M. H. S. A., & Williams, J. M. (2007) Ruthenium catalyzed N-alkylation of amines with alcohols. Chemical Communications, 7, 725–727. DOI: 10.1039/b616859k. http://dx.doi.org/10.1039/b616859k10.1039/b616859kSuche in Google Scholar

[12] Hargis, D. C. (1990). U.S. Patent No. 4,929,764. Washington, D.C.: U.S. Patent and Trademark Office. Suche in Google Scholar

[13] Heydari, A., Khaksar, S., Esfandyari, M., & Tajbakhsh, M. (2007) A novel one-pot reductive amination of aldehydes and ketones with lithium perchlorate and zirconium borohydride-piperazine complexes. Tetrahedron, 63, 3363–3366. DOI: 10.1016/j.tet.2007.02.026. http://dx.doi.org/10.1016/j.tet.2007.02.02610.1016/j.tet.2007.02.026Suche in Google Scholar

[14] Kawaguchi, M., Ohashi, J., Kawakami, Y., Yamamoto, Y., & Oda, J. C. (1985) Facile synthesis of morpholines and azacrown ethers by ozonolysis of cylic olefins and reductive N-alkylation. Synthesis, 1985, 701–703. http://dx.doi.org/10.1055/s-1985-3132210.1055/s-1985-31322Suche in Google Scholar

[15] Ko, A.-N., Yang, C.-L., Zhu, W.-D., & Lin, H.-E. (1996) Selective N-alkylation of aniline with methanol over γ-alumina. Applied Catalysis A: General, 134, 53–66. DOI: 10.1016/0926-860X(95)00209-X. http://dx.doi.org/10.1016/0926-860X(95)00209-X10.1016/0926-860X(95)00209-XSuche in Google Scholar

[16] Lai, J. T. (1980) Hindered amines. Synthesis of hindered acylic α-aminoacetamides. Journal of Organic Chemistry, 45, 3671–3673. DOI: 10.1021/jo01306a025. http://dx.doi.org/10.1021/jo01306a02510.1021/jo01306a025Suche in Google Scholar

[17] Li, K.-T., & Peng, Y.-C. (1994) Methylation of n-butylamine over solid-acid catalysts. Applied Catalysis A: General, 109, 225–233. DOI: 10.1016/0926-860X(94)80120-7. http://dx.doi.org/10.1016/0926-860X(94)80120-710.1016/0926-860X(94)80120-7Suche in Google Scholar

[18] Marsella, J. A. (1987) Homogeneously catalyzed synthesis of β-amino alcohols and vicinal diamines from ethylene glycol and 1,2-propanediol. Journal of Organic Chemistry, 52, 467–468. DOI: 10.1021/jo00379a035. http://dx.doi.org/10.1021/jo00379a03510.1021/jo00379a035Suche in Google Scholar

[19] Martínez, R., Ramon, D. J., & Yus, M. (2009) Selective N-monoalkylation of aromatic amines with benzylic alcohols by a hydrogen autotransfer process catalyzed by unmodified magnetite. Organic & Biomolecular Chemistry, 7, 2176–2181. DOI: 10.1039/b901929d. http://dx.doi.org/10.1039/b901929d10.1039/b901929dSuche in Google Scholar

[20] Nacario, R., Kotakonda, S., Fouchard, D. M. D., Tillekeratne, L. M. V., & Hudson, R. A. (2005) Reductive monoalkylation of aromatic and aliphatic nitro compounds and the corresponding amines with nitriles. Organic Letters, 7, 471–474. DOI: 10.1021/ol047580f. http://dx.doi.org/10.1021/ol047580f10.1021/ol047580fSuche in Google Scholar

[21] Narayanan, S., & Deshpande, K. (2000) Aniline alkylation over solid acid catalysts. Applied Catalysis A: General, 199, 1–31. DOI: 10.1016/S0926-860X (99)00540-2. http://dx.doi.org/10.1016/S0926-860X(99)00540-210.1016/S0926-860X(99)00540-2Suche in Google Scholar

[22] Nixon, T. D., Whittlesey, M. K., & Williams, J. M. J. (2009) Transition metal catalysed reactions of alcohols using borrowing hydrogen methodology. Dalton Transactions, 39, 753–762. DOI: 10.1039/b813383b. http://dx.doi.org/10.1039/b813383b10.1039/B813383BSuche in Google Scholar

[23] Ouk, S., Thiebaud, S., & Borredon, E. (2005) N-Methylation of nitrogen-containing heterocycles with dimethyl carbonate. Synthetic Comunications, 35, 3021–3026. DOI: 10.1080/00397910500278578. http://dx.doi.org/10.1080/0039791050027857810.1080/00397910500278578Suche in Google Scholar

[24] Romera, J. L., Cid, J. M., & Trabanco, A. A. (2004) Potassium iodide catalysed monoalkylation of anilines under microwave irradiation. Tetrahedron Letters, 45, 8797–8800. DOI: 10.1016/j.tetlet.2004.10.002 http://dx.doi.org/10.1016/j.tetlet.2004.10.00210.1016/j.tetlet.2004.10.002Suche in Google Scholar

[25] Salvatore, R. N., Yoon, C. H., & Jung, K. W. (2001) Synthesis of secondary amines. Tetrahedron, 57, 7785–7811. DOI: 10.1016/S0040-4020(01)00722-0. http://dx.doi.org/10.1016/S0040-4020(01)00722-010.1016/S0040-4020(01)00722-0Suche in Google Scholar

[26] Suzuki, K., Okano, K., Nakai, K., Terao, Y., & Sekiya, M. (1983) Reductive rearrangement of 2-chloroalkanamides with lithium aluminum hydride leading to α-methyl-branched aliphatic amines. Synthesis, 1983, 723–725. http://dx.doi.org/10.1055/s-1983-3048710.1055/s-1983-30487Suche in Google Scholar

[27] Takasaki, M., Motoyama, Y., Higashi, K., Yoon, S.-H., Mochida, I., & Nagashima, H. (2007) Ruthenium nanoparticles on nano-level-controlled carbon supports as highly effective catalysts for arene hydrogenation. Chemistry - An Asian Journal, 2, 1524–1533. DOI: 10.1002/asia.200700175. http://dx.doi.org/10.1002/asia.20070017510.1002/asia.200700175Suche in Google Scholar

[28] Valot, F., Fache, F., Jacquot, R., Spagnol, M., & Lemaire, M. (1999) Gas-phase selective N-alkylation of amines with alcohols over γ-alumina. Tetrahedron Letters, 40, 3689–3692. DOI: 10.1016/S0040-4039(99)00588-2. http://dx.doi.org/10.1016/S0040-4039(99)00588-210.1016/S0040-4039(99)00588-2Suche in Google Scholar

[29] Watanabe, Y., Tsuji, Y., & Ohusugi, Y. (1981) The ruthenium catalyzed N-alkylation and N-heterocyclization of aniline using alcohols and aldehydes. Tetrahedron Letters, 22, 2667–2670. DOI: 10.1016/S0040-4039(01)92965-X. http://dx.doi.org/10.1016/S0040-4039(01)92965-X10.1016/S0040-4039(01)92965-XSuche in Google Scholar

[30] Winans, C. F., & Adkins, H. (1932) The alkylation of amines as catalyzed by nickel. Journal of the American Chemical Society, 54, 306–312. DOI: 10.1021/ja01340a046. http://dx.doi.org/10.1021/ja01340a04610.1021/ja01340a046Suche in Google Scholar

Published Online: 2010-5-6
Published in Print: 2010-8-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Multi-elemental analysis of marine sediment reference material MESS-3: one-step microwave digestion and determination by high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS)
  2. Use of a diazocoupling reaction for sensitive and selective spectrophotometeric determination of furosemide in spiked human urine and pharmaceuticals
  3. Flow injection spectrofluorimetric determination of iron(III) in water using salicylic acid
  4. Liquid chromatographic determination of meloxicam in serum after solid phase extraction
  5. Antioxidant, antimicrobial, and tyrosinase inhibition activities of acetone extract of Ascophyllum nodosum
  6. Preparation and properties of surfactant-bacillolysin ion-pair in organic solvents
  7. Comparative evaluation of critical operating conditions for a tubular catalytic reactor using thermal sensitivity and loss-of-stability criteria
  8. Impact of ionic strength on adsorption capacity of chromatographic particles employed in separation of monoclonal antibodies
  9. Activity and regenerability of dealuminated zeolite Y in liquid phase alkylation of benzene with 1-alkene
  10. Polysaccharide from Anacardium occidentale L. tree gum (Policaju) as a coating for Tommy Atkins mangoes
  11. In vitro bioactivity and crystallization behavior of bioactive glass in the system SiO2-CaO-Al2O3-P2O5-Na2O-MgO-CaF2
  12. Synthesis of brushite nanoparticles at different temperatures
  13. Synthesis of 1-phenylbut-3-ene-1,2-dione and its attempted radical polymerization
  14. Vibrational spectroscopic and conformational studies of 1-(4-pyridyl)piperazine
  15. Theoretical binding affinities and spectra of complexes formed by a cyclic β-peptoid with amino acids
  16. Visual spectroscopy detection of triclosan
  17. Euphorbia antisyphilitica residues as a new source of ellagic acid
  18. A novel, stereoselective and practical protocol for the synthesis of 4β-aminopodophyllotoxins
  19. A novel method for N-alkylation of aliphatic amines with ethers over γ-Al2O3
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0033-7/pdf?lang=de
Button zum nach oben scrollen