Impact of ionic strength on adsorption capacity of chromatographic particles employed in separation of monoclonal antibodies
Abstract
The influence of ionic strength on the adsorption capacity of seven commercial adsorbents used in downstream processing of monoclonal antibodies was examined. Affinity (MabSelect, Poros 50A High Capacity, ProSep-vA High Capacity), hydrophobic charge-induction (MEP HyperCel), and cation exchange adsorbents (FractoGel EMD SE Hicap (M), SP Sepharose Fast Flow, Ceramic HyperD F) were used to study the adsorption of polyclonal human immunoglobulin G at optimal pH values. The ionic strength, adjusted by sodium chloride concentrations in the range of 0–225 mM, strongly decreased the adsorption capacity of the cation exchangers. Equilibrium data were described in the form of the dependence of the ratio of protein concentrations in the solid and liquid phases on the total concentration of cation counter ions. They were successfully fitted and interpreted through a stoichiometric ion-exchange model.
[1] Barrande, M., Beurroies, I., Denoyel, R., Tatárová, I., Gramblička, M., Polakovič, M., Joehnck, M., & Schulte, M. (2009). Characterisation of porous materials for bioseparation. Journal of Chromatography A, 1216, 6906–6916. DOI: 10.1016/j.chroma.2009.07.075. http://dx.doi.org/10.1016/j.chroma.2009.07.07510.1016/j.chroma.2009.07.075Search in Google Scholar
[2] Boschetti, E. (2002). Antibody separation by hydrophobic charge induction chromatography. Trends in Biotechnology, 20, 333–337. DOI: 10.1016/S0167-7799(02)01980-7. http://dx.doi.org/10.1016/S0167-7799(02)01980-710.1016/S0167-7799(02)01980-7Search in Google Scholar
[3] Burton, S. C., & Harding, D. R. K. (1998). Hydrophobic charge induction chromatography: salt independent protein adsorption and facile elution with aqueous buffers. Journal of Chromatography A, 814, 71–81. DOI: 10.1016/S0021-9673(98)00436-1. http://dx.doi.org/10.1016/S0021-9673(98)00436-110.1016/S0021-9673(98)00436-1Search in Google Scholar
[4] Carter-Franklin, N., Victa, C., McDonald, P., & Fahrner, R. (2007). Fragments of protein A eluted during protein A affinity chromatography. Journal of Chromatography A, 1163, 105–111. DOI: 10.1016/j.chroma.2007.06.012. http://dx.doi.org/10.1016/j.chroma.2007.06.01210.1016/j.chroma.2007.06.012Search in Google Scholar
[5] Chen, J., Tetrault, J., & Ley, A. (2008). Comparison of standard and new generation hydrophobic interaction chromatography resins in the monoclonal antibody purification process. Journal of Chromatography A, 1177, 272–281. DOI: 10.1016/j.chroma.2007.07.083. http://dx.doi.org/10.1016/j.chroma.2007.07.08310.1016/j.chroma.2007.07.083Search in Google Scholar
[6] Denton, G., Murray, A., Price, M. R., & Levison, P. R. (2001). Direct isolation of monoclonal antibodies from tissue culture supernatant using the cation-exchange cellulose Express-Ion S. Journal of Chromatography A, 908, 223–234. DOI: 10.1016/S0021-9673(00)00834-7. http://dx.doi.org/10.1016/S0021-9673(00)00834-710.1016/S0021-9673(00)00834-7Search in Google Scholar
[7] Faude, A., Zacher, D., Müller, E., & Böttinger, H. (2007). Fast determination of conditions for maximum dynamic capacity in cation-exchange chromatography of human monoclonal antibodies. Journal of Chromatography A, 1161, 29–35 DOI: 10.1016/j.chroma.2007.03.114. http://dx.doi.org/10.1016/j.chroma.2007.03.11410.1016/j.chroma.2007.03.114Search in Google Scholar PubMed
[8] Follman, D. K., & Fahrner, R. L. (2004). Factorial screening of antibody purification processes using three chromatography steps without protein A. Journal of Chromatography A, 1024, 79–85. DOI: 10.1016/j.chroma.2003.10.060. http://dx.doi.org/10.1016/j.chroma.2003.10.06010.1016/j.chroma.2003.10.060Search in Google Scholar PubMed
[9] Forrer, N., Butté, A., & Morbidelli, M. (2008). Chromatographic behavior of a polyclonal antibody mixture on a strong cation exchanger column. Part I: Adsorption characterization Journal of Chromatography A, 1214, 59–70. DOI: 10.1016/j.chroma.2008.10.048. http://dx.doi.org/10.1016/j.chroma.2008.10.04810.1016/j.chroma.2008.10.048Search in Google Scholar PubMed
[10] Ghose, S., Hubbard, B., & Cramer, S. M. (2006). Evaluation and comparison of alternatives to Protein A chromatography: Mimetic and hydrophobic charge induction chromatographic stationary phases. Journal of Chromatography A, 1122, 144–152. DOI: 10.1016/j.chroma.2006.04.083. http://dx.doi.org/10.1016/j.chroma.2006.04.08310.1016/j.chroma.2006.04.083Search in Google Scholar PubMed
[11] Gramblička, M., Tóthová, D., Antošová, M., & Polakovič, M. (2008). Influence of pH on adsorption of human immunoglobulin gamma, human serum albumin and horse myoglobin by commercial chromatographic materials designed for downstream processing of monoclonal antibodies. Acta Chimica Slovaca, 1(1) 85–94. Search in Google Scholar
[12] Guerrier, L., Flayeux, I., & Boschetti, E. (2001). A dual-mode approach to the selective separation of antibodies and their fragments. Journal of Chromatography B, 755, 37–46. DOI: 10.1016/S0378-4347(00)00598-3. http://dx.doi.org/10.1016/S0378-4347(00)00598-310.1016/S0378-4347(00)00598-3Search in Google Scholar
[13] Hahn, R., Schlegel, R., & Jungbauer, A. (2003). Comparison of protein A affinity sorbents. Journal of Chromatography B, 790, 35–51. DOI: 10.1016/S1570-0232(03)00092-8. http://dx.doi.org/10.1016/S1570-0232(03)00092-810.1016/S1570-0232(03)00092-8Search in Google Scholar
[14] Hahn, R., Shimahara, K., Steindl, F., & Jungbauer, A. (2006). Comparison of protein A affinity sorbents III. Life time study. Journal of Chromatography A, 1102, 224–231. DOI: 10.1016/j.chroma.2005.10.083. 10.1016/j.chroma.2005.10.083Search in Google Scholar
[15] Hober, S., Nord, K., & Linhult, M. (2007). Protein A chromatography for antibody purification. Journal of Chromatography B, 848, 40–47. DOI: 10.1016/j.jchromb.2006.09. 030. http://dx.doi.org/10.1016/j.jchromb.2006.09.03010.1016/j.jchromb.2006.09.030Search in Google Scholar
[16] Huse, K., Böhme, H.-J., & Scholz, G. H. (2002). Purification of antibodies by affinity chromatography. Journal of Biochemical and Biophysical Methods, 51, 217–231. DOI: 10.1016/S0165-022X(02)00017-9. http://dx.doi.org/10.1016/S0165-022X(02)00017-910.1016/S0165-022X(02)00017-9Search in Google Scholar
[17] Jungbauer, A. (2005). Chromatographic media for bioseparation. Journal of Chromatography A, 1065, 3–12. DOI: 10.1016/j.chroma.2004.08.162. http://dx.doi.org/10.1016/j.chroma.2004.08.16210.1016/j.chroma.2004.08.162Search in Google Scholar
[18] Low, D., O’Leary, R., & Pujar, N. S. (2007). Future of antibody purification. Journal of Chromatography B, 848, 48–63. DOI: 10.1016/j.jchromb.2006.10.033. http://dx.doi.org/10.1016/j.jchromb.2006.10.03310.1016/j.jchromb.2006.10.033Search in Google Scholar
[19] Mollerup, J. M. (2006). Applied thermodynamics: A new frontier for biotechnology. Fluid Phase Equilibria, 241, 205–215. DOI: 10.1016/j.fluid.2005.12.037. http://dx.doi.org/10.1016/j.fluid.2005.12.03710.1016/j.fluid.2005.12.037Search in Google Scholar
[20] Necina, R., Amatschek, K., & Jungbauer, A. (1998). Capture of human monoclonal antibodies from cell culture supernatant by ion exchange media exhibiting high charge density. Biotechnology and Bioengineering, 60, 689–698. DOI: 10.1002/(SICI)1097-0290(19981220)60:6〈689::AID-BIT6〉3.0.CO;2-M. http://dx.doi.org/10.1002/(SICI)1097-0290(19981220)60:6<689::AID-BIT6>3.0.CO;2-M10.1002/(SICI)1097-0290(19981220)60:6<689::AID-BIT6>3.0.CO;2-MSearch in Google Scholar
[21] Okay, O. (2000). Macroporous copolymer networks. Progress in Polymer Science, 25, 711–779. DOI: 10.1016/S0079-6700(00)00015-0. http://dx.doi.org/10.1016/S0079-6700(00)00015-010.1016/S0079-6700(00)00015-0Search in Google Scholar
[22] Roque, A. C. A., Silva, C. S. O., & Taipa, M. Á. (2007). Affinitybased methodologies and ligands for antibody purification: Advances and perspectives. Journal of Chromatography A, 1160, 44–55. DOI: 10.1016/j.chroma.2007.05.109. http://dx.doi.org/10.1016/j.chroma.2007.05.10910.1016/j.chroma.2007.05.109Search in Google Scholar
[23] Schwartz, W., Judd, D., Wysocki, M., Guerrier, L., Birck-Wilson, E., & Boschetti, E. (2001). Comparison of hydrophobic charge induction chromatography with affinity chromatography on protein A for harvest and purification of antibodies. Journal of Chromatography A, 908, 251–263. DOI: 10.1016/S0021-9673(00)01013-X. http://dx.doi.org/10.1016/S0021-9673(00)01013-X10.1016/S0021-9673(00)01013-XSearch in Google Scholar
[24] Shukla, A. A., Hubbard, B., Tressel, T., Guhan, S., & Low, D. (2007). Downstream processing of monoclonal antibodies—Application of platform approaches. Journal of Chromatography B, 848, 28–39. DOI: 10.1016/j.jchromb.2006.09.026. http://dx.doi.org/10.1016/j.jchromb.2006.09.02610.1016/j.jchromb.2006.09.026Search in Google Scholar
[25] Smith, A. W. (1948). Elements of physics (5th ed.). New York, NY, USA: McGraw-Hill. Search in Google Scholar
[26] Staby, A., Jacobsen, J. H., Hansen, R. G., Bruus, U. K., & Holm Jensen, I. (2006). Comparison of chromatographic ion-exchange resins: V. Strong and weak cation-exchange resins. Journal of Chromatography A, 1118, 168–179. DOI: 10.1016/j.chroma.2006.03.116. http://dx.doi.org/10.1016/j.chroma.2006.03.11610.1016/j.chroma.2006.03.116Search in Google Scholar
[27] Staby, A., Sand, M.-B., Hansen, R. G., Jacobsen, J. H., Andersen, L. A., Gerstenberg, M., Bruus, U. K., & Holm Jensen, I. (2005). Comparison of chromatographic ion-exchange resins: IV. Strong and weak cation-exchange resins and heparin resins. Journal of Chromatography A, 1069, 65–77. DOI: 10.1016/j.chroma.2004.11.094. http://dx.doi.org/10.1016/j.chroma.2004.11.09410.1016/j.chroma.2004.11.094Search in Google Scholar
[28] Stone, M. C., Tao, Y., & Carta, G. (2009). Protein adsorption and transport in agarose and dextran-grafted agarose media for ion exchange chromatography: Effect of ionic strength and protein characteristics. Journal of Chromatography A, 1216, 4465–4474. DOI: 10.1016/j.chroma.2009.03.044. http://dx.doi.org/10.1016/j.chroma.2009.03.04410.1016/j.chroma.2009.03.044Search in Google Scholar
[29] Tatárová, I., Gramblička, M., Antošová, M., & Polakovič, M. (2008). Characterization of pore structure of chromatographic adsorbents employed in separation of monoclonal antibodies using size-exclusion techniques. Journal of Chromatography A, 1193, 129–135. DOI: 10.1016/j.chroma.2008.04.023. http://dx.doi.org/10.1016/j.chroma.2008.04.02310.1016/j.chroma.2008.04.023Search in Google Scholar
[30] Tugcu, N., Bae, S. S., Moore, J. A., & Cramer, S. M. (2002). Stationary phase effects on the dynamic affinity of lowmolecular-mass displacers. Journal of Chromatography A, 954, 127–135. DOI: 10.1016/S0021-9673(02)00164-4. http://dx.doi.org/10.1016/S0021-9673(02)00164-410.1016/S0021-9673(02)00164-4Search in Google Scholar
[31] Zhu-Shimoni, J., Gunawan, F., Thomas, A., Vanderlaan, M., & Stults, J. (2009). Trace level analysis of leached Protein A in bioprocess samples without interference from the large excess of rhMAb IgG. Journal of Immunological Methods, 341, 59–67. DOI: 10.1016/j.jim.2008.10.015. http://dx.doi.org/10.1016/j.jim.2008.10.01510.1016/j.jim.2008.10.015Search in Google Scholar PubMed
© 2010 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Multi-elemental analysis of marine sediment reference material MESS-3: one-step microwave digestion and determination by high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS)
- Use of a diazocoupling reaction for sensitive and selective spectrophotometeric determination of furosemide in spiked human urine and pharmaceuticals
- Flow injection spectrofluorimetric determination of iron(III) in water using salicylic acid
- Liquid chromatographic determination of meloxicam in serum after solid phase extraction
- Antioxidant, antimicrobial, and tyrosinase inhibition activities of acetone extract of Ascophyllum nodosum
- Preparation and properties of surfactant-bacillolysin ion-pair in organic solvents
- Comparative evaluation of critical operating conditions for a tubular catalytic reactor using thermal sensitivity and loss-of-stability criteria
- Impact of ionic strength on adsorption capacity of chromatographic particles employed in separation of monoclonal antibodies
- Activity and regenerability of dealuminated zeolite Y in liquid phase alkylation of benzene with 1-alkene
- Polysaccharide from Anacardium occidentale L. tree gum (Policaju) as a coating for Tommy Atkins mangoes
- In vitro bioactivity and crystallization behavior of bioactive glass in the system SiO2-CaO-Al2O3-P2O5-Na2O-MgO-CaF2
- Synthesis of brushite nanoparticles at different temperatures
- Synthesis of 1-phenylbut-3-ene-1,2-dione and its attempted radical polymerization
- Vibrational spectroscopic and conformational studies of 1-(4-pyridyl)piperazine
- Theoretical binding affinities and spectra of complexes formed by a cyclic β-peptoid with amino acids
- Visual spectroscopy detection of triclosan
- Euphorbia antisyphilitica residues as a new source of ellagic acid
- A novel, stereoselective and practical protocol for the synthesis of 4β-aminopodophyllotoxins
- A novel method for N-alkylation of aliphatic amines with ethers over γ-Al2O3
Articles in the same Issue
- Multi-elemental analysis of marine sediment reference material MESS-3: one-step microwave digestion and determination by high resolution inductively coupled plasma-mass spectrometry (HR-ICP-MS)
- Use of a diazocoupling reaction for sensitive and selective spectrophotometeric determination of furosemide in spiked human urine and pharmaceuticals
- Flow injection spectrofluorimetric determination of iron(III) in water using salicylic acid
- Liquid chromatographic determination of meloxicam in serum after solid phase extraction
- Antioxidant, antimicrobial, and tyrosinase inhibition activities of acetone extract of Ascophyllum nodosum
- Preparation and properties of surfactant-bacillolysin ion-pair in organic solvents
- Comparative evaluation of critical operating conditions for a tubular catalytic reactor using thermal sensitivity and loss-of-stability criteria
- Impact of ionic strength on adsorption capacity of chromatographic particles employed in separation of monoclonal antibodies
- Activity and regenerability of dealuminated zeolite Y in liquid phase alkylation of benzene with 1-alkene
- Polysaccharide from Anacardium occidentale L. tree gum (Policaju) as a coating for Tommy Atkins mangoes
- In vitro bioactivity and crystallization behavior of bioactive glass in the system SiO2-CaO-Al2O3-P2O5-Na2O-MgO-CaF2
- Synthesis of brushite nanoparticles at different temperatures
- Synthesis of 1-phenylbut-3-ene-1,2-dione and its attempted radical polymerization
- Vibrational spectroscopic and conformational studies of 1-(4-pyridyl)piperazine
- Theoretical binding affinities and spectra of complexes formed by a cyclic β-peptoid with amino acids
- Visual spectroscopy detection of triclosan
- Euphorbia antisyphilitica residues as a new source of ellagic acid
- A novel, stereoselective and practical protocol for the synthesis of 4β-aminopodophyllotoxins
- A novel method for N-alkylation of aliphatic amines with ethers over γ-Al2O3