Direct sulfenylation of acetone with benzothiazolesulfenamides to benzothiazolylthio-substituted alkylaminopropene: synthesis and application
Abstract
N-Substituted derivatives of 2-benzothiazolesulfenamides give high yields of 1-(2′-benzothiazolylthio)-2-alkylaminoprop-1-ene and 1,1-bis-(2′-benzothiazolylthio)-2-alkylaminoprop-1-ene in a reaction with acetone in the temperature range from 56°C to 70°C and in the presence of a small amount of water. The α-sulfenylated carbonyl product, 2′-benzothiazolylthiopropan-2-one, is supposed to be an intermediate of this one-pot synthesis. 1,1-Bis-(2′-benzothiazolylthio)-2-tert-butylaminoprop-1-ene has been proved an accelerator of sulfur curing of rubber composites with high processing safety.
[1] Chapman, A. V. (1990). A facile reaction of sulphenamide accelerators with acetone. Journal of Natural Rubber Research, 5, 259–267. Search in Google Scholar
[2] Craine, L., & Raban, M. (1989). The chemistry of sulfenamides. Chemical Reviews, 89, 689–712. DOI: 10.1021/cr00094a001. http://dx.doi.org/10.1021/cr00094a00110.1021/cr00094a001Search in Google Scholar
[3] Forray, G., Peñéñory, A. B., & Rossi, R. A. (1997). A novel reaction of N-phenylthiocaprolactam: The α-sulfenylation of ketones under mild conditions. Tetrahedron Letters, 38, 2035–2038. DOI: 10.1016/S0040-4039(97)00288-8. http://dx.doi.org/10.1016/S0040-4039(97)00288-810.1016/S0040-4039(97)00288-8Search in Google Scholar
[4] Hronec, M., Štolcová, M., & Liptaj, T. (1994). Selective oxidation of 2-mercaptobenzothiazole. Studies in Surface Science and Catalysis, 82, 667–673. DOI: 10.1016/S0167-2991(08)63462-X. http://dx.doi.org/10.1016/S0167-2991(08)63462-X10.1016/S0167-2991(08)63462-XSearch in Google Scholar
[5] Huang, C.-H., Liao, K.-S., De, S. K., & Tsai, Y.-M. (2000). α-Sulfenylation of acylsilanes and aldehydes with N-(phenylthio) succinimide. Tetrahedron Letters, 41, 3911–3914. DOI: 10.1016/S0040-4039(00)00515-3. http://dx.doi.org/10.1016/S0040-4039(00)00515-310.1016/S0040-4039(00)00515-3Search in Google Scholar
[6] Kumamoto, T., Kobayashi, S., & Mukaiyama, T. (1972). Sulfenylation of active methylene compounds with sulfenamides. Bulletin of the Chemical Society of Japan, 45, 866–870. DOI: 10.1246/bcsj.45.866. http://dx.doi.org/10.1246/bcsj.45.86610.1246/bcsj.45.866Search in Google Scholar
[7] Mukaiyama, T., Kobayashi, S., & Kumamoto, T. (1970). The sulfenylation of the active methylene compounds by the use of sulfenamides. Tetrahedron Letters, 11, 5115–5118. DOI: 10.1016/S0040-4039(00)96953-3. http://dx.doi.org/10.1016/S0040-4039(00)96953-310.1016/S0040-4039(00)96953-3Search in Google Scholar
[8] Raymond, J. (1980). U.S. Patent No. 4182873. Washington, D.C.: U.S. Patent and Trademark Office. Search in Google Scholar
[9] Štolcová, M., & Hronec, M. (1996). Catalyzed oxidation of 2-mercaptobenzothiazole to 2-hydroxybenzothiazole. Recueil des Travaux Chimiques des Pays-Bas, 115, 222–229. 10.1002/recl.19961150406Search in Google Scholar
[10] Štolcová, M., Kaszonyi, A., & Hronec, M. (2001a). Reaction of N-alkyl-2-benzothiazolesulphenamide with acetic anhydride in the presence of acids I. Technological aspects. Journal of Molecular Catalysis A: Chemical, 172, 165–173. DOI: 10.1016/S1381-1169(01)00141-8. http://dx.doi.org/10.1016/S1381-1169(01)00141-810.1016/S1381-1169(01)00141-8Search in Google Scholar
[11] Štolcová, M., Kaszonyi, A., Hronec, M., & Liptaj, T. (1995). Reversed-phase high-performance liquid chromatographic method for the quantitative determination of alkylbis(2-benzothiazolylsulfen)amides. Journal of Chromatography A, 710, 351–353. SSDI 0021-9673(95)00513-7. http://dx.doi.org/10.1016/0021-9673(95)00513-710.1016/0021-9673(95)00513-7Search in Google Scholar
[12] Štolcov, M., Kaszonyi, A., Hronec, M., Liptaj, T., Staško, A., & Leško, J. (2001b). Reaction of N-tert-butyl-2-benzothiazolesulphenamide with acetic anhydride in the presence of acids II. Spectral studies Journal of Molecular Catalysis A: Chemical, 172, 175–186. DOI: 10.1016/S1381-1169(01)00140-6. 10.1016/S1381-1169(01)00140-6Search in Google Scholar
[13] Štolcová M., Kaszonyi, A., Liptaj, T., & Hronec, M. (1999). Determination of the products of the reaction of N-alkyl-2-benzothiazolesulfenamide by high-performance liquid chromatography with acetone. Journal of Chromatography A, 847, 351–358. DOI: 10.1016/S0021-9673(98)01024-3. http://dx.doi.org/10.1016/S0021-9673(98)01024-310.1016/S0021-9673(98)01024-3Search in Google Scholar
[14] Trost, B. M. (1978). α-Sulfenylated carbonyl compounds in organic synthesis. Chemical Reviews, 78, 363–382. DOI: 10.1021/cr60314a002. http://dx.doi.org/10.1021/cr60314a00210.1021/cr60314a002Search in Google Scholar
[15] Wang, W., Li, H., Wang, J., & Liao, L. (2004). Direct, organocatalytic α-sulfenylation of aldehydes and ketones. Tetrahedron Letters, 45, 8229–8231. DOI: 10.1016/j.tetlet.2004.09.021. http://dx.doi.org/10.1016/j.tetlet.2004.09.02110.1016/j.tetlet.2004.09.021Search in Google Scholar
[16] Yadav, J. S., Subba Reddy, B. V., Jain, R., & Baishya, G. (2008). N-Chlorosuccinimide as a versatile reagent for the sulfenylation of ketones: a facile synthesis of α-ketothioethers. Tetrahedron Letters, 49, 3015–3018. DOI: 10.1016/j.tetlet.2008.02.136. http://dx.doi.org/10.1016/j.tetlet.2008.02.13610.1016/j.tetlet.2008.02.136Search in Google Scholar
© 2009 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Immobilization of urease in poly(1-vinyl imidazole)/poly(acrylic acid) network
- Anodic reactions of sulphate in molten salts
- Fuels obtained by thermal cracking of individual and mixed polymers
- Synthesis, structure, and solvent-extraction properties of tridentate oxime ligands and their cobalt(II), nickel(II), copper(II), zinc(II) complexes
- Properties of a poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer membrane
- Influence of tungsten sources on the synthesis and properties of ammonium dioxothiotungstate
- A Raman spectroscopy study on differently deposited DLC layers in pulse arc system
- 1,7′-dimethyl-2′-propyl-1H,3′H-2,5′-bibenzo[d]imidazole as a corrosion inhibitor of mild steel in 1 M HCl
- The role of acidity profile in the nanotubular growth of polyaniline
- Direct sulfenylation of acetone with benzothiazolesulfenamides to benzothiazolylthio-substituted alkylaminopropene: synthesis and application
- Substituted pyridopyrimidinones. Part 5. Behavior of 2-hydroxy-4-oxo-4H-pyrido[1,2-α]pyrimidine-3-carbaldehyde in nucleophilic condensation reactions
- Lidocaine hydrochloride preparations with ionic and non-ionic polymers assessed at standard and increased skin surface temperatures
- Phase separation in non-ionic surfactant Triton X-100 solutions in the presence of phenol
- Phase formation in sodium dodecylsulfate solutions in the presence of salicylic acid for preconcentration purposes
- Numerical properties of equations involving high-order derivatives of pressure with respect to volume
- Synthesis and characterization of conducting copolymer of (N 1,N 3-bis(thiophene-3-ylmethylene)benzene-1,3-diamine-co-3,4-ethylenedioxythiophene)
- Intercalation of non-aromatic heterocyclic amines into layered zirconium glycine-N,N-dimethylphosphonate
- Kinetics of catalytic Meerwein-Ponndorf-Verley reduction of aldehydes and ketones using boron triethoxide
Articles in the same Issue
- Immobilization of urease in poly(1-vinyl imidazole)/poly(acrylic acid) network
- Anodic reactions of sulphate in molten salts
- Fuels obtained by thermal cracking of individual and mixed polymers
- Synthesis, structure, and solvent-extraction properties of tridentate oxime ligands and their cobalt(II), nickel(II), copper(II), zinc(II) complexes
- Properties of a poly(ethylene glycol)-block-poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) copolymer membrane
- Influence of tungsten sources on the synthesis and properties of ammonium dioxothiotungstate
- A Raman spectroscopy study on differently deposited DLC layers in pulse arc system
- 1,7′-dimethyl-2′-propyl-1H,3′H-2,5′-bibenzo[d]imidazole as a corrosion inhibitor of mild steel in 1 M HCl
- The role of acidity profile in the nanotubular growth of polyaniline
- Direct sulfenylation of acetone with benzothiazolesulfenamides to benzothiazolylthio-substituted alkylaminopropene: synthesis and application
- Substituted pyridopyrimidinones. Part 5. Behavior of 2-hydroxy-4-oxo-4H-pyrido[1,2-α]pyrimidine-3-carbaldehyde in nucleophilic condensation reactions
- Lidocaine hydrochloride preparations with ionic and non-ionic polymers assessed at standard and increased skin surface temperatures
- Phase separation in non-ionic surfactant Triton X-100 solutions in the presence of phenol
- Phase formation in sodium dodecylsulfate solutions in the presence of salicylic acid for preconcentration purposes
- Numerical properties of equations involving high-order derivatives of pressure with respect to volume
- Synthesis and characterization of conducting copolymer of (N 1,N 3-bis(thiophene-3-ylmethylene)benzene-1,3-diamine-co-3,4-ethylenedioxythiophene)
- Intercalation of non-aromatic heterocyclic amines into layered zirconium glycine-N,N-dimethylphosphonate
- Kinetics of catalytic Meerwein-Ponndorf-Verley reduction of aldehydes and ketones using boron triethoxide