Startseite Synthesis, characterization, and anti-tumor activities of some transition metal(II) complexes with podophyllic acid hydrazide
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis, characterization, and anti-tumor activities of some transition metal(II) complexes with podophyllic acid hydrazide

  • Jian-Qiang Qu EMAIL logo , Ling Qu , Qiu-Hua Yang und Liu-Fang Wang
Veröffentlicht/Copyright: 27. Mai 2009
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Four transition metal(II) complexes with podophyllic acid hydrazide (HL) were prepared and characterized by elemental analysis, complexometric titration, thermal analysis, conductivity, IR, and 1H NMR. The complexes have the general formula ML2 · nH2O, where M = Zn, Cu, Co, and Ni, n = 2 or 0. Anti-tumor activities of podophyllotoxin, HL, ZnL2 · 2H2O, and NiL2 were tested by both the MTT and the SRB method. The results show that the activities of the complexes against the tumor cells tested are superior to HL and the anti-tumor activity of NiL2 is even similar to that of podophyllotoxin.

[1] Ayres, D. C., & Loike, J. D. (1990). Lignans: chemical, biological and clinical properties. London: Cambridge University Press. 10.1017/CBO9780511983665Suche in Google Scholar

[2] Bekheit, M. M., & Ibrahim, K. M. (1986). Synthesis of some transition metal complexes derived from 1-valeroyl-4-phenyl-3-thiosemicarbazide. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 16, 1135.1147. DOI: 10.1080/00945718608071387. http://dx.doi.org/10.1080/0094571860807138710.1080/00945718608071387Suche in Google Scholar

[3] Biradar, N. S., & Locker, A. L. (1974). Complexes of zirconyl chloride with schiff bases containing ONS sequences. Journal of Inorganic and Nuclear Chemistry, 36, 1915–1916. DOI: 10.1016/0022-1902(74)80540-3. http://dx.doi.org/10.1016/0022-1902(74)80540-310.1016/0022-1902(74)80540-3Suche in Google Scholar

[4] Canel, C., Moraes, R. M., Dayan, F. E., & Ferreira, D. (2000). Podophyllotoxin. Phytochemistry, 54, 115–120. DOI: 10.1016/S0031-9422(00)00094-7. http://dx.doi.org/10.1016/S0031-9422(00)00094-710.1016/S0031-9422(00)00094-7Suche in Google Scholar

[5] Cardillo, B., Giorgini, E., Maurelli, E., & Tosi, G. (1992). Molecular complexes of hydrazides with copper(II). Monatshefte für Chemie, 123, 231–236. DOI: 10.1007/BF00810470. http://dx.doi.org/10.1007/BF0081047010.1007/BF00810470Suche in Google Scholar

[6] Chen, Y. Z., Zhang, C. J., & Tian, X. (1987). Spin-labeled antitumor derivatives of podophyllotoxin. Scientia Sinica — Series B: Chemical, Biological, Agricultural, Medical and Earth Sciences, 30, 1070–1079. Suche in Google Scholar

[7] Cho, S. J., Tropsha, A., Sufness, M., Cheng, Y. C., & Lee, K. H. (1996). Three-dimensional quantitative structure-activity relationship study of 4′-O-demethylepipodophyllotoxin analogs using the modified CoMFA/q2-GRS approach. Journal of Medicinal Chemistry, 39, 1383–1395. DOI: 10.1021/jm9503052. http://dx.doi.org/10.1021/jm950305210.1021/jm9503052Suche in Google Scholar

[8] Cortese, F., Bhattacharyya, B., & Wolff, J. (1977). Podophyllotoxin as a probe for the colchicine binding site of tubulin. Journal of Biological Chemistry, 252, 1134–1140. 10.1016/S0021-9258(17)40631-4Suche in Google Scholar

[9] Damayanthi, Y., & Lown, J. W. (1998). Podophyllotoxins: current status and recent developments. Current Medicinal Chemistry, 5, 205–252. 10.2174/0929867305666220314204426Suche in Google Scholar

[10] Dodoff, N., Grancharov, K., & Spassovska, N. (1995). Platinum(II) complexes of 4-methoxy- and 4-chlorobenzoic acid hydrazides. Synthesis, characterization, and cytotoxic effect. Journal of Inorganic Biochemistry, 60, 257–266. DOI: 10.1016/0162-0134(95)00025-9. http://dx.doi.org/10.1016/0162-0134(95)00025-910.1016/0162-0134(95)00025-9Suche in Google Scholar

[11] Empt, U., Alfermann, A. W., Pras, N., & Petersen, M. (2000). The use of plant cell cultures for the production of podophyllotoxin and related lignans. Journal of Applied Botany, 74, 145–150. Suche in Google Scholar

[12] Fridborg, K., Kannan, K. K., Liljas, A., Lundin, J., Strandberg, B., Strandberg, B., Tilander, B. (The Late), & Wiren, G. (1967). Crystal structure of human erythrocyte carbonic anhydrase C. III. Molecular structure of the enzyme and of one enzyme-inhibitor complex at 5.5 Å resolution. Journal of Molecular Biology, 25, 505–516. DOI: 10.1016/0022-2836(67)90202-1. http://dx.doi.org/10.1016/0022-2836(67)90202-110.1016/0022-2836(67)90202-1Suche in Google Scholar

[13] Geary, W. J. (1971). The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coordination Chemistry Reviews, 7, 81–122. DOI: 10.1016/S0010-8545(00)80009-0. http://dx.doi.org/10.1016/S0010-8545(00)80009-010.1016/S0010-8545(00)80009-0Suche in Google Scholar

[14] Giri, A., & Narasu, M. L. (2000). Production of podophyllotoxin from Podophyllum hexandrum: a potential natural product for clinically useful anticancer drugs. Cytotechnology, 34, 17–26. DOI: 10.1023/A:1008138230896. http://dx.doi.org/10.1023/A:100813823089610.1023/A:1008138230896Suche in Google Scholar

[15] Gordaliza, M., Castro, M. A., Miguel, D. C. J. M., & Feliciano, A. S. (2000). Antitumor properties of podophyllotoxin and related compounds. Current Pharmaceutical Design, 6, 1811–1839. DOI: 10.2174/1381612003398582. http://dx.doi.org/10.2174/138161200339858210.2174/1381612003398582Suche in Google Scholar

[16] Hande, K. R. (1998). Etoposide: four decades of development of a topoisomerase II inhibitor. European Journal of Cancer, 34, 1514–1521. DOI: 10.1016/S0959-8049(98)00228-7. http://dx.doi.org/10.1016/S0959-8049(98)00228-710.1016/S0959-8049(98)00228-7Suche in Google Scholar

[17] Hughes, M. N. (1972). The inorganic chemistry of biological processes. London: Wiley. Suche in Google Scholar

[18] Imbert, T. F. (1998). Discovery of podophyllotoxins. Biochimie, 80, 207–222. DOI: 10.1016/S0300-9084(98)80004-7. http://dx.doi.org/10.1016/S0300-9084(98)80004-710.1016/S0300-9084(98)80004-7Suche in Google Scholar

[19] Issell, B. F. (1982). The podophyllotoxin derivatives VP16-213 and VM26. Cancer Chemotherapy and Pharmacology, 7, 73–80. DOI: 10.1007/BF00254525. 10.1007/BF00254525Suche in Google Scholar

[20] Jardine, I. (1980). Anticancer agents based on natural products models. New York: Academic Press. Suche in Google Scholar

[21] Kadow, J. F., Vyas, D. M., & Doyle, T. W. (1989). Synthesis of etoposide lactam via a mitsunobu reaction sequence. Tetrahedron Letters, 30, 3299–3302. DOI: 10.1016/S0040-4039(00)99226-8. http://dx.doi.org/10.1016/S0040-4039(00)99226-810.1016/S0040-4039(00)99226-8Suche in Google Scholar

[22] Loike, J. D., Brewer, C. F., Sternlicht, H., Gensler, W. J., & Horwitz, S. B. (1978). Structure-activity study of the inhibition of microtubule assembly in vitro by podophyllotoxin and its congeners. Cancer Research, 38, 2688–2693. DOI: 0008-5472/78/0038-0000502.00. Suche in Google Scholar

[23] Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63. DOI: 10.1016/0022-1759(83)90303-4. http://dx.doi.org/10.1016/0022-1759(83)90303-410.1016/0022-1759(83)90303-4Suche in Google Scholar

[24] Muhi-Eldeen, Z., Al-Obaidi, K., Nadir, M., & Roche, V. F. (1992). Synthesis and antimicrobial activity of Ni(II), Co(II), Zn(II) and Cd(II) complexes of 4-substituted-3-mercapto- 5-phenyl-4H-1,2,4-triazoles. European Journal of Medicinal Chemistry, 27, 101–106. DOI: 10.1016/0223-5234(92)90097-K. http://dx.doi.org/10.1016/0223-5234(92)90097-K10.1016/0223-5234(92)90097-KSuche in Google Scholar

[25] Narang, K. K., & Singh, V. P. (1993). Synthesis, characterization, thermal studies and biological activity of Iron(III) complexes with some acylhydrazines. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 23, 971–989. DOI: 10.1080/15533179308016876. http://dx.doi.org/10.1080/1553317930801687610.1080/15533179308016876Suche in Google Scholar

[26] Rutschmann, J., & Renz, J. (1959). Über saurehydrazide aus der podophyllotoxin-reihe. 8. mitteilung über mitosehemmende naturstoffe. Helvetica Chimica Acta, 42, 890.907. DOI: 10.1002/hlca.19590420334. http://dx.doi.org/10.1002/hlca.1959042033410.1002/hlca.19590420334Suche in Google Scholar

[27] Sackett, D. L. (1993). Podophyllotoxin, steganacin and combretastatin: Natural products that bind at the colchicine site of tubulin. Pharmacology & Therapeutics, 59, 163–228. DOI: 10.1016/0163-7258(93)90044-E. http://dx.doi.org/10.1016/0163-7258(93)90044-E10.1016/0163-7258(93)90044-ESuche in Google Scholar

[28] Schacter, L. (1996). Etoposide phosphate: what, why, where, and how? Seminars in Oncology, 3, 1–7. Suche in Google Scholar

[29] Schrecker, A. W., & Hartwell, J. L. (1956). Components of podophyllin. XX. The absolute configuration of podophyllotoxin and related lignans. Journal of Organic Chemistry, 21, 381–382. DOI: 10.1021/jo01109a617. 10.1021/jo01109a617Suche in Google Scholar

[30] Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., & Boyd, M. R. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. Journal of the National Cancer Institute, 82, 1107–1112. DOI: 10.1093/jnci/82.13.1107. http://dx.doi.org/10.1093/jnci/82.13.110710.1093/jnci/82.13.1107Suche in Google Scholar

[31] Stähelin, H. F., & von Wartburg, A. (1991). The chemical and biological route from podophyllotoxin glucoside to etoposide: Ninth Cain Memorial Award lecture. Cancer Research, 51, 5–15. Suche in Google Scholar

[32] Sur, P., Chatterjee, S. P., Roy, P., & Sur, B. (1995). 5-Nitrofuran derivatives of fatty acid hydrazides induce differentiation in human myeloid leukaemic cell lines. Cancer Letters, 94, 27–32. DOI: 10.1016/0304-3835(95)03819-I. http://dx.doi.org/10.1016/0304-3835(95)03819-I10.1016/0304-3835(95)03819-ISuche in Google Scholar

[33] Ter, H. E., Rosenkranz, H. S., Hamel, E., & Day, B. W. (1996). Computational and molecular modeling evaluation of the structural basis for tubulin polymerization inhibition by colchicine site agents. Bioorganic & Medicinal Chemistry, 4, 1659–1671. DOI: 10.1016/0968-0896(96)00158-7. http://dx.doi.org/10.1016/0968-0896(96)00158-710.1016/0968-0896(96)00158-7Suche in Google Scholar

[34] Tian, X., Zhang, F. M., & Li, W. G. (2002). Antitumor and antioxidant activity of spin labeled derivatives of podophyllotoxin (GP-1) and congeners. Life Sciences, 70, 2433–2443. DOI: 10.1016/S0024-3205(02)01482-0. http://dx.doi.org/10.1016/S0024-3205(02)01482-010.1016/S0024-3205(02)01482-0Suche in Google Scholar

[35] Wang, P. H., Zhang, Q., Wang, L. F., Song, Y. M., Qu, J. Q., & Liu, Y. Q. (2006). Studies on the interaction of the metal complex of hydrazide of podophyllic acid with DNA. Spectroscopy and Spectral Analysis, 26, 941–943. Suche in Google Scholar

[36] Ward, R. S. (1999). Lignans, neolignans and related compounds. Natural Product Reports, 16, 75–96. DOI: 10.1039/a705992b. http://dx.doi.org/10.1039/a705992b10.1039/a705992bSuche in Google Scholar

[37] Witterland, A. H. I., Koks, C. H. W., & Beijnen, J. H. (1996). Etoposide phosphate, the water soluble prodrug of etoposide. Pharmacy World & Science, 18, 163–170. DOI: 10.1007/BF00820727. http://dx.doi.org/10.1007/BF0082072710.1007/BF00820727Suche in Google Scholar PubMed

[38] Yu, J. (2001). An experimental study on proliferative and apoptotic effects of podophyllic acid in K562 cells. Ph.M. thesis, Lanzhou Medical College, Lanzhou. Suche in Google Scholar

Published Online: 2009-5-27
Published in Print: 2009-8-1

© 2009 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. GC-MS analyses of flower ether extracts of Prunus domestica L. and Prunus padus L. (Rosaceae)
  2. A novel kinetic-spectrophotometric method for determination of nitrites in water
  3. Characterization of recombinant antibodies for detection of TNT and its derivatives
  4. Improvements in the selection of real components forming a substitute mixture for petroleum fractions
  5. Chemical evaluation of seeded fruit biomass of oil pumpkin (Cucurbita pepo L. var. Styriaca)
  6. Application of 31P NMR for added polyphosphate determination in pork meat
  7. Estimation of composition, coordination model, and stability constant of some metal/phosphate complexes using spectral and potentiometric measurements
  8. Synthesis, characterization, and anti-tumor activities of some transition metal(II) complexes with podophyllic acid hydrazide
  9. Artificial neural network prediction of steric hindrance parameter of polymers
  10. Immobilization of porphyrins in poly(hydroxymethylsiloxane)
  11. Preparation and characterization of porous cordierite for potential use in cellular ceramics
  12. Characterization of NiFe2O4 nanoparticles synthesized by various methods
  13. QSAR analysis of 1,3-diaryl-2-propen-1-ones and their indole analogs for designing potent antibacterial agents
  14. QSAR study of 2,4-disubstituted phenoxyacetic acid derivatives as a CRTh2 receptor antagonists
  15. Comparison of isothermal and non-isothermal chemiluminescence and differential scanning calorimetry experiments with benzoyl peroxide
  16. Wettability of plasma-polymerized vinyltriethoxysilane film
  17. A spectrofluorimetric method for the determination of acitretin in pharmaceuticals
  18. Fatty acid profile of Trichosanthes kirilowii Maxim. seed oil
  19. Determination of the enthalpy of fusion of K3TaO2F4 and KTaF6
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-009-0033-7/html?lang=de
Button zum nach oben scrollen