Abstract
Areas of fusion and crystallization peaks of K3TaO2F4 and KTaF6 were measured using the DSC mode of a high-temperature calorimeter (SETARAM 1800 K). On the basis of these quantities, considering the temperature dependence of the calorimeter sensitivity, values of the fusion enthalpy of K3TaO2F4 at the fusion temperature of 1181 K of (43 ± 4) kJ mol−1 and of KTaF6 at the fusion temperature of 760 K of (8 ± 1) kJ mol−1 were determined.
[1] Adamkovièová, K., Fellner, P., Kosa, L., Lazor, P., Nerád, I., & Proks, I. (1991). Determination of the enthalpy of fusion of Na3FSO4. Thermochimica Acta, 191, 57–61. DOI: 10.1016/0040-6031(91)87237-Q. http://dx.doi.org/10.1016/0040-6031(91)87237-Q10.1016/0040-6031(91)87237-QSearch in Google Scholar
[2] Adamkovičová, K., Kosa, L., Nerád, I., & Proks, I. (1996). Determination of the enthalpy of fusion of K3TiF6Cl. Thermochimica Acta, 287, 1–6. DOI 10.1016/0040-6031(96)02993-0. http://dx.doi.org/10.1016/0040-6031(96)02993-010.1016/0040-6031(96)02993-0Search in Google Scholar
[3] Agulyansky, A. (2004). The chemistry of tantalum and niobium fluoride compounds (1st ed.) (p. 147). Amsterdam: Elsevier B.V. DOI: 10.1016/B978-044451604-6/50005-7. 10.1016/B978-044451604-6/50005-7Search in Google Scholar
[4] Agulyansky, A. I., Kuznetzov, V. Ya., Agulyanskaya, L. A., & Kalinnikov, V. T. (1984). Hexaftorotantalaty shchelochnykh metallov. Koordinatsionnaya Khimiya, 10, 1512–1514. Search in Google Scholar
[5] Barin, I., & Knacke, O. (1973). Thermochemical properties of inorganic substances (pp. 365, 379, 381, 404, 519). Berlin, Heidelberg, New York: Springer Verlag. Düsseldorf: Verlag Stahleisen. Search in Google Scholar
[6] Boèa, M., Fuess, H., & Ivanová, Z. (2005). Systems of potassium oxofluorotantalates. Chemical Papers, 59, 304–309. Search in Google Scholar
[7] Bode, H., & von Döhren, H. (1958). Die Kristallstruktur des Kaliumhexafluoroniobats und des Kaliumhexafluorotantalats. Acta Crystallographica, 11, 80–82. DOI: 10.1107/S0365110X58000220. http://dx.doi.org/10.1107/S0365110X5800022010.1107/S0365110X58000220Search in Google Scholar
[8] Chaminade, J. P., Vlasse, M., Pouchard, M., & Hagenmuller, P. (1974). Sur quelques oxyfluorotantalates de potassium. Bulletin de la Société Chimique de France, 9-10, 1791–1794. Search in Google Scholar
[9] Fouad, M., Chaminade, J. P., Ravez, J., & Hagenmuller, P. (1987)a. Les transitions de phases des oxyfluorures A3TiOF5 et A3MO2F4 (A=K, Rb, Cs; M=Nb, Ta). Revue de Chimie Minérale, 24, 1–9. Search in Google Scholar
[10] Fouad, M., Ravez, J., Chaminade, J. P., & Hagenmuller, P. (1987)b. Etude de la transition de phases de nouveaux oxyfluorures ferroélastiques K3NbOF6 et K3TaOF6. Revue de Chimie Minérale, 24, 583–592. Search in Google Scholar
[11] Ghosh, J. K., & Ghosh, G. (1988). Unit cell dimensions of some oxofluorometallates of transition metals. Journal of Fluorine Chemistry, 38, 183–186. DOI: 10.1016/S0022-1139(00)83027-4. http://dx.doi.org/10.1016/S0022-1139(00)83027-410.1016/S0022-1139(00)83027-4Search in Google Scholar
[12] Iuchi, T., & Ono, K. (1961). Studies on the production of tantalum by electrolysis of fused salt. I. Solubility of tantalum oxide (Ta2O5-KF-K2TaF7 and Ta2O5-KCl-K2TaF7). Science Reports of the Research Institutes, Tohoku University, Serie A-13, 456–465. Search in Google Scholar
[13] JANAF thermochemical tables (3rd ed.). Washington D.C.: U.S. National Bureau of Standards. Search in Google Scholar
[14] Konstantinov, V. I. (1977). Vzaimodeystvie v oksiftoridnykh rasplavakh, soderzhashchikh soedineniya tantala. Elektroliticheskoe poluchenie tantala, niobiya i ikh splavov (pp. 14–23). Moskva: Metalurgia. Search in Google Scholar
[15] Ts’ui, P. H., Luzhnaya, N. P., & Konstantinov, V. I. (1963)a. Issledovanie troynoy vzaimnoy sistemi iz ftoridov i khloridov kalia i tantala. Zhurnal Neorganicheskoy Khimii, 8, 389–395. Search in Google Scholar
[16] Ts’ui, P. H., Konstantinov, V. I., & Luzhnaya, N. P. (1963)b. Rastvorimost i vzaimodeystvie faz v sistemakh iz Ta2O5, ftoridov i khloridov kalia i tantala. Zhurnal Neorganicheskoy Khimii, 8, 396–402. Search in Google Scholar
© 2009 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- GC-MS analyses of flower ether extracts of Prunus domestica L. and Prunus padus L. (Rosaceae)
- A novel kinetic-spectrophotometric method for determination of nitrites in water
- Characterization of recombinant antibodies for detection of TNT and its derivatives
- Improvements in the selection of real components forming a substitute mixture for petroleum fractions
- Chemical evaluation of seeded fruit biomass of oil pumpkin (Cucurbita pepo L. var. Styriaca)
- Application of 31P NMR for added polyphosphate determination in pork meat
- Estimation of composition, coordination model, and stability constant of some metal/phosphate complexes using spectral and potentiometric measurements
- Synthesis, characterization, and anti-tumor activities of some transition metal(II) complexes with podophyllic acid hydrazide
- Artificial neural network prediction of steric hindrance parameter of polymers
- Immobilization of porphyrins in poly(hydroxymethylsiloxane)
- Preparation and characterization of porous cordierite for potential use in cellular ceramics
- Characterization of NiFe2O4 nanoparticles synthesized by various methods
- QSAR analysis of 1,3-diaryl-2-propen-1-ones and their indole analogs for designing potent antibacterial agents
- QSAR study of 2,4-disubstituted phenoxyacetic acid derivatives as a CRTh2 receptor antagonists
- Comparison of isothermal and non-isothermal chemiluminescence and differential scanning calorimetry experiments with benzoyl peroxide
- Wettability of plasma-polymerized vinyltriethoxysilane film
- A spectrofluorimetric method for the determination of acitretin in pharmaceuticals
- Fatty acid profile of Trichosanthes kirilowii Maxim. seed oil
- Determination of the enthalpy of fusion of K3TaO2F4 and KTaF6
Articles in the same Issue
- GC-MS analyses of flower ether extracts of Prunus domestica L. and Prunus padus L. (Rosaceae)
- A novel kinetic-spectrophotometric method for determination of nitrites in water
- Characterization of recombinant antibodies for detection of TNT and its derivatives
- Improvements in the selection of real components forming a substitute mixture for petroleum fractions
- Chemical evaluation of seeded fruit biomass of oil pumpkin (Cucurbita pepo L. var. Styriaca)
- Application of 31P NMR for added polyphosphate determination in pork meat
- Estimation of composition, coordination model, and stability constant of some metal/phosphate complexes using spectral and potentiometric measurements
- Synthesis, characterization, and anti-tumor activities of some transition metal(II) complexes with podophyllic acid hydrazide
- Artificial neural network prediction of steric hindrance parameter of polymers
- Immobilization of porphyrins in poly(hydroxymethylsiloxane)
- Preparation and characterization of porous cordierite for potential use in cellular ceramics
- Characterization of NiFe2O4 nanoparticles synthesized by various methods
- QSAR analysis of 1,3-diaryl-2-propen-1-ones and their indole analogs for designing potent antibacterial agents
- QSAR study of 2,4-disubstituted phenoxyacetic acid derivatives as a CRTh2 receptor antagonists
- Comparison of isothermal and non-isothermal chemiluminescence and differential scanning calorimetry experiments with benzoyl peroxide
- Wettability of plasma-polymerized vinyltriethoxysilane film
- A spectrofluorimetric method for the determination of acitretin in pharmaceuticals
- Fatty acid profile of Trichosanthes kirilowii Maxim. seed oil
- Determination of the enthalpy of fusion of K3TaO2F4 and KTaF6