Abstract
Cordierite porous ceramics Z, X, and K were prepared using three mixtures of clay minerals: Z from kaolinite, talc, and aluminum hydroxide, X from kaolinite, talc, vermiculite, and aluminum hydroxide, and K from kaolinite, talc, and magnesium oxide. Ceramics were different in porosity, specific surface area, cordierite polymorphs, and secondary crystalline phases. Vermiculite influenced textural architecture of calcined cordierite ceramics X and predestinated crystallization of the high-temperature hexagonal α-cordierite with secondary minerals enstatite, spinel and corundum. Ceramics Z contained low-temperature orthorhombic β-cordierite, enstatite, and corundum, K was diphase of β-cordierite and forsterite. Total pore area (TPA) and specific surface area (SSA) of X, in spite of the higher porosity and the pore size distribution in the range of 300–1000 nm, were smaller in comparison with TPA and SSA of Z. Ceramics K retained high porosity, two maxima at 300–1000 nm and 50–200 nm in the pores size distribution, and the highest TPA and SSA compared to those observed in ceramics Z and X.
[1] Acimovic, Z., Pavlovic, L., Trumbulovic, L., Andric, L., & Stamatovic, M. (2003). Synthesis and characterization of the cordierite ceramics from nonstandard raw materials for application in foundry. Materials Letters, 57, 2651–2656. DOI: 10.1016/S0167-577X(02)01345-9. http://dx.doi.org/10.1016/S0167-577X(02)01345-910.1016/S0167-577X(02)01345-9Suche in Google Scholar
[2] Alves, H. M., Tarí, G., Fonseca, A. T., & Ferreira, J. M. F. (1998). Processing of porous cordierite bodies by starch consolidation. Materials Research Bulletin, 33, 1439–1448. DOI: 10.1016/S0025-5408(98)00131-7. http://dx.doi.org/10.1016/S0025-5408(98)00131-710.1016/S0025-5408(98)00131-7Suche in Google Scholar
[3] Ashby, M. F. (2005). Cellular solids — Scaling of properties. In M. Scheffler, & P. Colombo (Eds.), Cellular ceramics (pp. 3–17). Weinheim: Wiley-VCH. DOI: 10.1002/3527606696.ch1a. 10.1002/3527606696.ch1aSuche in Google Scholar
[4] Cohen, J. P., Ross, F. K., & Gibbs, G. V. (1977). X-ray and neutron diffraction study of hydrous low cordierite. American Mineralogist, 62, 67–78. Suche in Google Scholar
[5] Colombo, P., & Stankiewicz, E. P. (2005). Other developments and special applications. In M. Scheffler, & P. Colombo (Eds.), Cellular ceramics (pp. 596–620). Weinheim: Wiley-VCH. DOI: 10.1002/3527606696.ch5k. http://dx.doi.org/10.1002/3527606696.ch5k10.1002/3527606696.ch5kSuche in Google Scholar
[6] Gibbs, G. V. (1966). The polymorphism of cordierite: I. The crystal structure of low cordierite. American Mineralogist, 51, 1068–1087. Suche in Google Scholar
[7] González-Velasco, J. R., Gutiérrez-Ortiz, M. A., Ferret, R., Aranzabal, A., & Botas, J. A. (1999). Synthesis of cordierite monolithic honeycomb by solid state reaction of precursor oxides. Journal of Materials Science, 34, 1999–2002. DOI: 10.1023/A:1004578819314. http://dx.doi.org/10.1023/A:100457881931410.1023/A:1004578819314Suche in Google Scholar
[8] Goren, R., Ozgur, C., & Gocmez, H. (2006). The preparation of cordierite from talc, fly ash, fused silica and alumina mixtures. Ceramics International, 32, 53–56. DOI: 10.1016/j.ceramint.2005.01.001. http://dx.doi.org/10.1016/j.ceramint.2005.01.00110.1016/j.ceramint.2005.01.001Suche in Google Scholar
[9] Gusev, A. A., Avvakumov, E. G., Vinokurova, O. B., & Salostii, V. P. (2001). The effect of transition metal oxides on the strength, phase composition, and microstructure of cordierite ceramics. Glass and Ceramics, 58, 24–26. DOI: 10.1023/A:1010976810405. http://dx.doi.org/10.1023/A:101097681040510.1023/A:1010976810405Suche in Google Scholar
[10] Hochella, M. F., Brown, G. E., Ross, F. K., & Gibbs, G. V. (1979). High-temperature crystal chemistry of hydrous Mg-and Fe-cordierites. American Mineralogist, 64, 337–351. Suche in Google Scholar
[11] Janković-Častvan, I., Layarević, S., Tanasković, D., Orlović, A., Petroviè, R., & Janaćković, Đ. (2007). Phase transformation in cordierite gel synthesized by non-hydrolytic sol-gel route. Ceramics International, 33, 1263–1268. DOI: 10.1016/j.ceramint.2006.05.003. http://dx.doi.org/10.1016/j.ceramint.2006.05.00310.1016/j.ceramint.2006.05.003Suche in Google Scholar
[12] Kobayashi, Y., Sumi, K., & Kato, E. (2000). Preparation of dense cordierite ceramics from magnesium compounds and kaolinite without additives. Ceramics International, 26, 739–743. DOI: 10.1016/S0272-8842(00)00013-4. http://dx.doi.org/10.1016/S0272-8842(00)00013-410.1016/S0272-8842(00)00013-4Suche in Google Scholar
[13] Langer, K., & Schreyer, W. (1969). Infrared and powder X-ray diffraction studies on the polymorphism of cordierite, Mg2(Al4Si5O18). American Mineralogist, 54, 1442–1459. Suche in Google Scholar
[14] Meagher, E. P., & Gibbs, G. V. (1977). The polymorphism of cordierite II: The crystal structure of indialite. The Canadian Mineralogist, 15, 43–49. Suche in Google Scholar
[15] Miyake, A. (2005). Effect of ionic size in the tetrahedral and octahedral sites on the thermal expansion of low-temperature cordierite. Journal of the American Ceramic Society, 88, 362–366. DOI: 10.1111/j.1551-2916.2005.00059.x. http://dx.doi.org/10.1111/j.1551-2916.2005.00059.x10.1111/j.1551-2916.2005.00059.xSuche in Google Scholar
[16] Naskar, M. K., & Chatterjee, M. (2004). A novel process for the synthesis of cordierite (Mg2Al4Si5O18) powders from rice husk ash and other sources of silica and their comparative study. Journal of the European Ceramic Society, 24, 3499–3508. DOI: 10.1016/j.jeurceramsoc.2003.11.029. http://dx.doi.org/10.1016/j.jeurceramsoc.2003.11.02910.1016/j.jeurceramsoc.2003.11.029Suche in Google Scholar
[17] Putnis, A. (1980). The distortion index in anhydrous Mg-cordierite. Contributions to Mineralogy and Petrology, 74, 135–141. DOI: 10.1007/BF01131999. http://dx.doi.org/10.1007/BF0113199910.1007/BF01131999Suche in Google Scholar
[18] Schreyer, W., & Schairer, J. F. (1961). Compositions and structural states of anhydrous Mg-cordierites: a reinvestigation of the central part of the system MgO-Al2O3-SiO2. Journal of Petrology, 2, 324–406. 10.1093/petrology/2.3.324Suche in Google Scholar
[19] Schwartz, K. B., Leong, D. B., & McConville, R. L. (1994). Structural chemistry of synthetic cordierite: evidence for solid solutions and disordered compositional domains in Bi-flux-grown Mg-cordierites. Physics and Chemistry of Minerals, 20, 563–574. DOI: 10.1007/BF00211852. http://dx.doi.org/10.1007/BF0021185210.1007/BF00211852Suche in Google Scholar
[20] Tsai, M. T. (2002). Synthesis of nanocrystalline forsterite fiber via a chemical route. Materials Research Bulletin, 37, 2213–2226. DOI: 10.1016/S0025-5408(02)00926-1. 10.1016/S0025-5408(02)00926-1Suche in Google Scholar
© 2009 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- GC-MS analyses of flower ether extracts of Prunus domestica L. and Prunus padus L. (Rosaceae)
- A novel kinetic-spectrophotometric method for determination of nitrites in water
- Characterization of recombinant antibodies for detection of TNT and its derivatives
- Improvements in the selection of real components forming a substitute mixture for petroleum fractions
- Chemical evaluation of seeded fruit biomass of oil pumpkin (Cucurbita pepo L. var. Styriaca)
- Application of 31P NMR for added polyphosphate determination in pork meat
- Estimation of composition, coordination model, and stability constant of some metal/phosphate complexes using spectral and potentiometric measurements
- Synthesis, characterization, and anti-tumor activities of some transition metal(II) complexes with podophyllic acid hydrazide
- Artificial neural network prediction of steric hindrance parameter of polymers
- Immobilization of porphyrins in poly(hydroxymethylsiloxane)
- Preparation and characterization of porous cordierite for potential use in cellular ceramics
- Characterization of NiFe2O4 nanoparticles synthesized by various methods
- QSAR analysis of 1,3-diaryl-2-propen-1-ones and their indole analogs for designing potent antibacterial agents
- QSAR study of 2,4-disubstituted phenoxyacetic acid derivatives as a CRTh2 receptor antagonists
- Comparison of isothermal and non-isothermal chemiluminescence and differential scanning calorimetry experiments with benzoyl peroxide
- Wettability of plasma-polymerized vinyltriethoxysilane film
- A spectrofluorimetric method for the determination of acitretin in pharmaceuticals
- Fatty acid profile of Trichosanthes kirilowii Maxim. seed oil
- Determination of the enthalpy of fusion of K3TaO2F4 and KTaF6
Artikel in diesem Heft
- GC-MS analyses of flower ether extracts of Prunus domestica L. and Prunus padus L. (Rosaceae)
- A novel kinetic-spectrophotometric method for determination of nitrites in water
- Characterization of recombinant antibodies for detection of TNT and its derivatives
- Improvements in the selection of real components forming a substitute mixture for petroleum fractions
- Chemical evaluation of seeded fruit biomass of oil pumpkin (Cucurbita pepo L. var. Styriaca)
- Application of 31P NMR for added polyphosphate determination in pork meat
- Estimation of composition, coordination model, and stability constant of some metal/phosphate complexes using spectral and potentiometric measurements
- Synthesis, characterization, and anti-tumor activities of some transition metal(II) complexes with podophyllic acid hydrazide
- Artificial neural network prediction of steric hindrance parameter of polymers
- Immobilization of porphyrins in poly(hydroxymethylsiloxane)
- Preparation and characterization of porous cordierite for potential use in cellular ceramics
- Characterization of NiFe2O4 nanoparticles synthesized by various methods
- QSAR analysis of 1,3-diaryl-2-propen-1-ones and their indole analogs for designing potent antibacterial agents
- QSAR study of 2,4-disubstituted phenoxyacetic acid derivatives as a CRTh2 receptor antagonists
- Comparison of isothermal and non-isothermal chemiluminescence and differential scanning calorimetry experiments with benzoyl peroxide
- Wettability of plasma-polymerized vinyltriethoxysilane film
- A spectrofluorimetric method for the determination of acitretin in pharmaceuticals
- Fatty acid profile of Trichosanthes kirilowii Maxim. seed oil
- Determination of the enthalpy of fusion of K3TaO2F4 and KTaF6