Abstract
Four transition metal(II) complexes with podophyllic acid hydrazide (HL) were prepared and characterized by elemental analysis, complexometric titration, thermal analysis, conductivity, IR, and 1H NMR. The complexes have the general formula ML2 · nH2O, where M = Zn, Cu, Co, and Ni, n = 2 or 0. Anti-tumor activities of podophyllotoxin, HL, ZnL2 · 2H2O, and NiL2 were tested by both the MTT and the SRB method. The results show that the activities of the complexes against the tumor cells tested are superior to HL and the anti-tumor activity of NiL2 is even similar to that of podophyllotoxin.
[1] Ayres, D. C., & Loike, J. D. (1990). Lignans: chemical, biological and clinical properties. London: Cambridge University Press. 10.1017/CBO9780511983665Search in Google Scholar
[2] Bekheit, M. M., & Ibrahim, K. M. (1986). Synthesis of some transition metal complexes derived from 1-valeroyl-4-phenyl-3-thiosemicarbazide. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 16, 1135.1147. DOI: 10.1080/00945718608071387. http://dx.doi.org/10.1080/0094571860807138710.1080/00945718608071387Search in Google Scholar
[3] Biradar, N. S., & Locker, A. L. (1974). Complexes of zirconyl chloride with schiff bases containing ONS sequences. Journal of Inorganic and Nuclear Chemistry, 36, 1915–1916. DOI: 10.1016/0022-1902(74)80540-3. http://dx.doi.org/10.1016/0022-1902(74)80540-310.1016/0022-1902(74)80540-3Search in Google Scholar
[4] Canel, C., Moraes, R. M., Dayan, F. E., & Ferreira, D. (2000). Podophyllotoxin. Phytochemistry, 54, 115–120. DOI: 10.1016/S0031-9422(00)00094-7. http://dx.doi.org/10.1016/S0031-9422(00)00094-710.1016/S0031-9422(00)00094-7Search in Google Scholar
[5] Cardillo, B., Giorgini, E., Maurelli, E., & Tosi, G. (1992). Molecular complexes of hydrazides with copper(II). Monatshefte für Chemie, 123, 231–236. DOI: 10.1007/BF00810470. http://dx.doi.org/10.1007/BF0081047010.1007/BF00810470Search in Google Scholar
[6] Chen, Y. Z., Zhang, C. J., & Tian, X. (1987). Spin-labeled antitumor derivatives of podophyllotoxin. Scientia Sinica — Series B: Chemical, Biological, Agricultural, Medical and Earth Sciences, 30, 1070–1079. Search in Google Scholar
[7] Cho, S. J., Tropsha, A., Sufness, M., Cheng, Y. C., & Lee, K. H. (1996). Three-dimensional quantitative structure-activity relationship study of 4′-O-demethylepipodophyllotoxin analogs using the modified CoMFA/q2-GRS approach. Journal of Medicinal Chemistry, 39, 1383–1395. DOI: 10.1021/jm9503052. http://dx.doi.org/10.1021/jm950305210.1021/jm9503052Search in Google Scholar
[8] Cortese, F., Bhattacharyya, B., & Wolff, J. (1977). Podophyllotoxin as a probe for the colchicine binding site of tubulin. Journal of Biological Chemistry, 252, 1134–1140. 10.1016/S0021-9258(17)40631-4Search in Google Scholar
[9] Damayanthi, Y., & Lown, J. W. (1998). Podophyllotoxins: current status and recent developments. Current Medicinal Chemistry, 5, 205–252. 10.2174/0929867305666220314204426Search in Google Scholar
[10] Dodoff, N., Grancharov, K., & Spassovska, N. (1995). Platinum(II) complexes of 4-methoxy- and 4-chlorobenzoic acid hydrazides. Synthesis, characterization, and cytotoxic effect. Journal of Inorganic Biochemistry, 60, 257–266. DOI: 10.1016/0162-0134(95)00025-9. http://dx.doi.org/10.1016/0162-0134(95)00025-910.1016/0162-0134(95)00025-9Search in Google Scholar
[11] Empt, U., Alfermann, A. W., Pras, N., & Petersen, M. (2000). The use of plant cell cultures for the production of podophyllotoxin and related lignans. Journal of Applied Botany, 74, 145–150. Search in Google Scholar
[12] Fridborg, K., Kannan, K. K., Liljas, A., Lundin, J., Strandberg, B., Strandberg, B., Tilander, B. (The Late), & Wiren, G. (1967). Crystal structure of human erythrocyte carbonic anhydrase C. III. Molecular structure of the enzyme and of one enzyme-inhibitor complex at 5.5 Å resolution. Journal of Molecular Biology, 25, 505–516. DOI: 10.1016/0022-2836(67)90202-1. http://dx.doi.org/10.1016/0022-2836(67)90202-110.1016/0022-2836(67)90202-1Search in Google Scholar
[13] Geary, W. J. (1971). The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coordination Chemistry Reviews, 7, 81–122. DOI: 10.1016/S0010-8545(00)80009-0. http://dx.doi.org/10.1016/S0010-8545(00)80009-010.1016/S0010-8545(00)80009-0Search in Google Scholar
[14] Giri, A., & Narasu, M. L. (2000). Production of podophyllotoxin from Podophyllum hexandrum: a potential natural product for clinically useful anticancer drugs. Cytotechnology, 34, 17–26. DOI: 10.1023/A:1008138230896. http://dx.doi.org/10.1023/A:100813823089610.1023/A:1008138230896Search in Google Scholar
[15] Gordaliza, M., Castro, M. A., Miguel, D. C. J. M., & Feliciano, A. S. (2000). Antitumor properties of podophyllotoxin and related compounds. Current Pharmaceutical Design, 6, 1811–1839. DOI: 10.2174/1381612003398582. http://dx.doi.org/10.2174/138161200339858210.2174/1381612003398582Search in Google Scholar
[16] Hande, K. R. (1998). Etoposide: four decades of development of a topoisomerase II inhibitor. European Journal of Cancer, 34, 1514–1521. DOI: 10.1016/S0959-8049(98)00228-7. http://dx.doi.org/10.1016/S0959-8049(98)00228-710.1016/S0959-8049(98)00228-7Search in Google Scholar
[17] Hughes, M. N. (1972). The inorganic chemistry of biological processes. London: Wiley. Search in Google Scholar
[18] Imbert, T. F. (1998). Discovery of podophyllotoxins. Biochimie, 80, 207–222. DOI: 10.1016/S0300-9084(98)80004-7. http://dx.doi.org/10.1016/S0300-9084(98)80004-710.1016/S0300-9084(98)80004-7Search in Google Scholar
[19] Issell, B. F. (1982). The podophyllotoxin derivatives VP16-213 and VM26. Cancer Chemotherapy and Pharmacology, 7, 73–80. DOI: 10.1007/BF00254525. 10.1007/BF00254525Search in Google Scholar
[20] Jardine, I. (1980). Anticancer agents based on natural products models. New York: Academic Press. Search in Google Scholar
[21] Kadow, J. F., Vyas, D. M., & Doyle, T. W. (1989). Synthesis of etoposide lactam via a mitsunobu reaction sequence. Tetrahedron Letters, 30, 3299–3302. DOI: 10.1016/S0040-4039(00)99226-8. http://dx.doi.org/10.1016/S0040-4039(00)99226-810.1016/S0040-4039(00)99226-8Search in Google Scholar
[22] Loike, J. D., Brewer, C. F., Sternlicht, H., Gensler, W. J., & Horwitz, S. B. (1978). Structure-activity study of the inhibition of microtubule assembly in vitro by podophyllotoxin and its congeners. Cancer Research, 38, 2688–2693. DOI: 0008-5472/78/0038-0000502.00. Search in Google Scholar
[23] Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63. DOI: 10.1016/0022-1759(83)90303-4. http://dx.doi.org/10.1016/0022-1759(83)90303-410.1016/0022-1759(83)90303-4Search in Google Scholar
[24] Muhi-Eldeen, Z., Al-Obaidi, K., Nadir, M., & Roche, V. F. (1992). Synthesis and antimicrobial activity of Ni(II), Co(II), Zn(II) and Cd(II) complexes of 4-substituted-3-mercapto- 5-phenyl-4H-1,2,4-triazoles. European Journal of Medicinal Chemistry, 27, 101–106. DOI: 10.1016/0223-5234(92)90097-K. http://dx.doi.org/10.1016/0223-5234(92)90097-K10.1016/0223-5234(92)90097-KSearch in Google Scholar
[25] Narang, K. K., & Singh, V. P. (1993). Synthesis, characterization, thermal studies and biological activity of Iron(III) complexes with some acylhydrazines. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 23, 971–989. DOI: 10.1080/15533179308016876. http://dx.doi.org/10.1080/1553317930801687610.1080/15533179308016876Search in Google Scholar
[26] Rutschmann, J., & Renz, J. (1959). Über saurehydrazide aus der podophyllotoxin-reihe. 8. mitteilung über mitosehemmende naturstoffe. Helvetica Chimica Acta, 42, 890.907. DOI: 10.1002/hlca.19590420334. http://dx.doi.org/10.1002/hlca.1959042033410.1002/hlca.19590420334Search in Google Scholar
[27] Sackett, D. L. (1993). Podophyllotoxin, steganacin and combretastatin: Natural products that bind at the colchicine site of tubulin. Pharmacology & Therapeutics, 59, 163–228. DOI: 10.1016/0163-7258(93)90044-E. http://dx.doi.org/10.1016/0163-7258(93)90044-E10.1016/0163-7258(93)90044-ESearch in Google Scholar
[28] Schacter, L. (1996). Etoposide phosphate: what, why, where, and how? Seminars in Oncology, 3, 1–7. Search in Google Scholar
[29] Schrecker, A. W., & Hartwell, J. L. (1956). Components of podophyllin. XX. The absolute configuration of podophyllotoxin and related lignans. Journal of Organic Chemistry, 21, 381–382. DOI: 10.1021/jo01109a617. 10.1021/jo01109a617Search in Google Scholar
[30] Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., & Boyd, M. R. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. Journal of the National Cancer Institute, 82, 1107–1112. DOI: 10.1093/jnci/82.13.1107. http://dx.doi.org/10.1093/jnci/82.13.110710.1093/jnci/82.13.1107Search in Google Scholar
[31] Stähelin, H. F., & von Wartburg, A. (1991). The chemical and biological route from podophyllotoxin glucoside to etoposide: Ninth Cain Memorial Award lecture. Cancer Research, 51, 5–15. Search in Google Scholar
[32] Sur, P., Chatterjee, S. P., Roy, P., & Sur, B. (1995). 5-Nitrofuran derivatives of fatty acid hydrazides induce differentiation in human myeloid leukaemic cell lines. Cancer Letters, 94, 27–32. DOI: 10.1016/0304-3835(95)03819-I. http://dx.doi.org/10.1016/0304-3835(95)03819-I10.1016/0304-3835(95)03819-ISearch in Google Scholar
[33] Ter, H. E., Rosenkranz, H. S., Hamel, E., & Day, B. W. (1996). Computational and molecular modeling evaluation of the structural basis for tubulin polymerization inhibition by colchicine site agents. Bioorganic & Medicinal Chemistry, 4, 1659–1671. DOI: 10.1016/0968-0896(96)00158-7. http://dx.doi.org/10.1016/0968-0896(96)00158-710.1016/0968-0896(96)00158-7Search in Google Scholar
[34] Tian, X., Zhang, F. M., & Li, W. G. (2002). Antitumor and antioxidant activity of spin labeled derivatives of podophyllotoxin (GP-1) and congeners. Life Sciences, 70, 2433–2443. DOI: 10.1016/S0024-3205(02)01482-0. http://dx.doi.org/10.1016/S0024-3205(02)01482-010.1016/S0024-3205(02)01482-0Search in Google Scholar
[35] Wang, P. H., Zhang, Q., Wang, L. F., Song, Y. M., Qu, J. Q., & Liu, Y. Q. (2006). Studies on the interaction of the metal complex of hydrazide of podophyllic acid with DNA. Spectroscopy and Spectral Analysis, 26, 941–943. Search in Google Scholar
[36] Ward, R. S. (1999). Lignans, neolignans and related compounds. Natural Product Reports, 16, 75–96. DOI: 10.1039/a705992b. http://dx.doi.org/10.1039/a705992b10.1039/a705992bSearch in Google Scholar
[37] Witterland, A. H. I., Koks, C. H. W., & Beijnen, J. H. (1996). Etoposide phosphate, the water soluble prodrug of etoposide. Pharmacy World & Science, 18, 163–170. DOI: 10.1007/BF00820727. http://dx.doi.org/10.1007/BF0082072710.1007/BF00820727Search in Google Scholar PubMed
[38] Yu, J. (2001). An experimental study on proliferative and apoptotic effects of podophyllic acid in K562 cells. Ph.M. thesis, Lanzhou Medical College, Lanzhou. Search in Google Scholar
© 2009 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- GC-MS analyses of flower ether extracts of Prunus domestica L. and Prunus padus L. (Rosaceae)
- A novel kinetic-spectrophotometric method for determination of nitrites in water
- Characterization of recombinant antibodies for detection of TNT and its derivatives
- Improvements in the selection of real components forming a substitute mixture for petroleum fractions
- Chemical evaluation of seeded fruit biomass of oil pumpkin (Cucurbita pepo L. var. Styriaca)
- Application of 31P NMR for added polyphosphate determination in pork meat
- Estimation of composition, coordination model, and stability constant of some metal/phosphate complexes using spectral and potentiometric measurements
- Synthesis, characterization, and anti-tumor activities of some transition metal(II) complexes with podophyllic acid hydrazide
- Artificial neural network prediction of steric hindrance parameter of polymers
- Immobilization of porphyrins in poly(hydroxymethylsiloxane)
- Preparation and characterization of porous cordierite for potential use in cellular ceramics
- Characterization of NiFe2O4 nanoparticles synthesized by various methods
- QSAR analysis of 1,3-diaryl-2-propen-1-ones and their indole analogs for designing potent antibacterial agents
- QSAR study of 2,4-disubstituted phenoxyacetic acid derivatives as a CRTh2 receptor antagonists
- Comparison of isothermal and non-isothermal chemiluminescence and differential scanning calorimetry experiments with benzoyl peroxide
- Wettability of plasma-polymerized vinyltriethoxysilane film
- A spectrofluorimetric method for the determination of acitretin in pharmaceuticals
- Fatty acid profile of Trichosanthes kirilowii Maxim. seed oil
- Determination of the enthalpy of fusion of K3TaO2F4 and KTaF6
Articles in the same Issue
- GC-MS analyses of flower ether extracts of Prunus domestica L. and Prunus padus L. (Rosaceae)
- A novel kinetic-spectrophotometric method for determination of nitrites in water
- Characterization of recombinant antibodies for detection of TNT and its derivatives
- Improvements in the selection of real components forming a substitute mixture for petroleum fractions
- Chemical evaluation of seeded fruit biomass of oil pumpkin (Cucurbita pepo L. var. Styriaca)
- Application of 31P NMR for added polyphosphate determination in pork meat
- Estimation of composition, coordination model, and stability constant of some metal/phosphate complexes using spectral and potentiometric measurements
- Synthesis, characterization, and anti-tumor activities of some transition metal(II) complexes with podophyllic acid hydrazide
- Artificial neural network prediction of steric hindrance parameter of polymers
- Immobilization of porphyrins in poly(hydroxymethylsiloxane)
- Preparation and characterization of porous cordierite for potential use in cellular ceramics
- Characterization of NiFe2O4 nanoparticles synthesized by various methods
- QSAR analysis of 1,3-diaryl-2-propen-1-ones and their indole analogs for designing potent antibacterial agents
- QSAR study of 2,4-disubstituted phenoxyacetic acid derivatives as a CRTh2 receptor antagonists
- Comparison of isothermal and non-isothermal chemiluminescence and differential scanning calorimetry experiments with benzoyl peroxide
- Wettability of plasma-polymerized vinyltriethoxysilane film
- A spectrofluorimetric method for the determination of acitretin in pharmaceuticals
- Fatty acid profile of Trichosanthes kirilowii Maxim. seed oil
- Determination of the enthalpy of fusion of K3TaO2F4 and KTaF6