Abstract
Two methods for determination of lipid peroxidation (LPX) products in rat brain homogenates were compared. The thiobarbituric acid (TBA) test and HPLC assay for analysis of malondialdehyde (MDA) were applied. Rat brain homogenate dissolved in tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl) was mixed with TBA and H3PO4 and heated at 100°C to form colored complex that was extracted into butanol. No significant differences were found between the contents of TBA-reacting substances and their amount deduced from the MDA-TBA analysis. The presented results show that LPX products in brain homogenates can be determined without interferences also by the TBA test. Moreover, a survey of various methods used for the sample preparation before analysis of LPX products originating from different brain areas was made and compared with the obtained results.
[1] Maboudou, P., Mathieu, D., Bachelet, H., Wiart, J. F., and Lhermitte, M., Biomed. Chromatogr. 16, 199 (2002). http://dx.doi.org/10.1002/bmc.12710.1002/bmc.127Search in Google Scholar
[2] Bird, R. P., Hung, S. S. O., Hadley, M., and Draper, H. H., Anal. Biochem. 128, 240 (1983). http://dx.doi.org/10.1016/0003-2697(83)90371-810.1016/0003-2697(83)90371-8Search in Google Scholar
[3] Csallany, A. S., Der Guan, M., Manwaring, J. D., and Addis, P. B., Anal. Biochem. 142, 277 (1984). http://dx.doi.org/10.1016/0003-2697(84)90465-210.1016/0003-2697(84)90465-2Search in Google Scholar
[4] Lepage, G., Munoz, G., Champagne, J., and Roy, C. C., Anal. Biochem. 197, 277 (1991). http://dx.doi.org/10.1016/0003-2697(91)90392-710.1016/0003-2697(91)90392-7Search in Google Scholar
[5] Sheu, J. Y., Ku, H. P., Tseng, W. C., Chen, M. T., Tsai, L. Y., and Huang, Y. L., Anal. Sci. 19, 621 (2003). http://dx.doi.org/10.2116/analsci.19.62110.2116/analsci.19.621Search in Google Scholar
[6] Ichinose, T., Miller, M. G., and Shibamoto, T., Lipids 24, 895 (1989). http://dx.doi.org/10.1007/BF0253576510.1007/BF02535765Search in Google Scholar
[7] Wasowicz, W., Neve, J., and Peretz, A., Clin. Chem. 39, 2522 (1993). Search in Google Scholar
[8] Draper, H. H., Squires, E. J., Mahmoodi, H., Wu, J., Agarwal, S., and Hadley, M., Free Radical Biol. Med. 15, 353 (1993). http://dx.doi.org/10.1016/0891-5849(93)90035-S10.1016/0891-5849(93)90035-SSearch in Google Scholar
[9] Sürmen-Gür, E., Gülten, T., Serdar, Z., and Colakogullari, M., Med. Sci. Monit. 12, BR102 (2006). Search in Google Scholar
[10] Bull, A. W. and Marnett, L. J., Anal. Biochem. 149, 284 (1985). http://dx.doi.org/10.1016/0003-2697(85)90506-810.1016/0003-2697(85)90506-8Search in Google Scholar
[11] Esterbauer, H., Schaur, R. J., and Zollner, H., Free Radical. Biol. Med. 11, 81 (1991). http://dx.doi.org/10.1016/0891-5849(91)90192-610.1016/0891-5849(91)90192-6Search in Google Scholar
[12] Fukunaga, K., Suzuki, T., and Takama, K., J. Chromatogr.-Biomed. 621, 77 (1993). http://dx.doi.org/10.1016/0378-4347(93)80078-I10.1016/0378-4347(93)80078-ISearch in Google Scholar
[13] Mecocci, P., Fanó, G., Fulle, S., MacGarvey, U., Shinobu, L., Polidori, M. C., Cherubini, A., Vecchiet, J., Senin, U., and Beal, M. F., Free Radical Biol. Med. 26, 303 (1999). http://dx.doi.org/10.1016/S0891-5849(98)00208-110.1016/S0891-5849(98)00208-1Search in Google Scholar
[14] Draper, H. H. and Hadley, M., Methods Enzymol. 186, 421 (1990). Search in Google Scholar
[15] Lee, H-S. and Csatlany, A. S., Lipids 22, 104 (1987). http://dx.doi.org/10.1007/BF0253486110.1007/BF02534861Search in Google Scholar
[16] Ohkawa, H., Ohishi, N., and Yagi, K., Anal. Biochem. 95, 351 (1979). http://dx.doi.org/10.1016/0003-2697(79)90738-310.1016/0003-2697(79)90738-3Search in Google Scholar
[17] Zima, T., Štípek, S., Crkovská, J., and Pláteník, J., Klin. Biochem. Metab. 3, 98 (1995). Search in Google Scholar
[18] Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randal, R. J., J. Biol. Chem. 193, 265 (1951). Search in Google Scholar
[19] Feng, Z., Qin, C., Chang, Y., and Zhang, J. T., Free Radical Biol. Med. 40, 101 (2006). http://dx.doi.org/10.1016/j.freeradbiomed.2005.08.01410.1016/j.freeradbiomed.2005.08.014Search in Google Scholar
[20] Janero, D. R., Free Radical Biol. Med. 9, 515 (1990). http://dx.doi.org/10.1016/0891-5849(90)90131-210.1016/0891-5849(90)90131-2Search in Google Scholar
[21] Halliwell, B. and Gutteridge, J. M. C., Free Radicals in Biology and Medicine, 3rd Edition, p. 936. Oxford University Press, Oxford, 1999. Search in Google Scholar
[22] Bird, R. P. and Draper, H. H., Methods Enzymol. 105, 299 (1984). http://dx.doi.org/10.1016/S0076-6879(84)05038-210.1016/S0076-6879(84)05038-2Search in Google Scholar
[23] Yagi, K., in Active Oxygens, Lipid Peroxides, and Antioxidants (Yagi, K., Editor), p. 39. Japan Scientific Societies Press, Tokyo/CRC Press, Boca Raton, 1993. Search in Google Scholar
[24] Cini, M. and Moretti, A., Neurobiol. Aging 16, 53 (1995). http://dx.doi.org/10.1016/0197-4580(95)80007-E10.1016/0197-4580(95)80007-ESearch in Google Scholar
[25] Garcia, Y. J., Rodríquez-Malaver, A. J., and Peñaloza, N., J. Neurosci. Methods 144, 127 (2005). http://dx.doi.org/10.1016/j.jneumeth.2004.10.01810.1016/j.jneumeth.2004.10.018Search in Google Scholar PubMed
[26] Ljubuncic, P., Tanne, Z., and Bomzon, A., Gut 47, 710 (2000). http://dx.doi.org/10.1136/gut.47.5.71010.1136/gut.47.5.710Search in Google Scholar PubMed PubMed Central
© 2007 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Step by step towards understanding gold glyconanoparticles as elements of the nanoworld
- Structure—activity relationships for in vitro oxime reactivation of chlorpyrifos-inhibited acetylcholinesterase
- Separation and characterization of products from thermal cracking of individual and mixed polyalkenes
- Mobility of important toxic analytes in urban dust and simulated air filters determined by sequential extraction and GFAAS/ICP-OES methods
- Effect of addition of ameliorative materials on the distribution of As, Cd, Pb, and Zn in extractable soil fractions
- Effect of gamma irradiation on trichromatic values of spices
- Homo- and heteronuclear complexes of a new, vicinal dioxime ligand
- Synthesis of new triphenodithiazine- and indolocarbazolediones of biological interest
- Dielectric relaxation of butyl acrylate—alcohol mixtures using time domain reflectometry
- Ab initio study of small coinage metal telluride clusters AunTem (n, m = 1, 2)
- Binding affinities and spectra of complexes formed by dehydrotetrapyrido[20]annulene and small molecules
- Comparison of spectrophotometric and HPLC methods for determination of lipid peroxidation products in rat brain tissues
- Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors
- Mechanism of thermal decomposition of cobalt acetate tetrahydrate
- Three-component, one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones catalyzed by bromodimethylsulfonium bromide
Articles in the same Issue
- Step by step towards understanding gold glyconanoparticles as elements of the nanoworld
- Structure—activity relationships for in vitro oxime reactivation of chlorpyrifos-inhibited acetylcholinesterase
- Separation and characterization of products from thermal cracking of individual and mixed polyalkenes
- Mobility of important toxic analytes in urban dust and simulated air filters determined by sequential extraction and GFAAS/ICP-OES methods
- Effect of addition of ameliorative materials on the distribution of As, Cd, Pb, and Zn in extractable soil fractions
- Effect of gamma irradiation on trichromatic values of spices
- Homo- and heteronuclear complexes of a new, vicinal dioxime ligand
- Synthesis of new triphenodithiazine- and indolocarbazolediones of biological interest
- Dielectric relaxation of butyl acrylate—alcohol mixtures using time domain reflectometry
- Ab initio study of small coinage metal telluride clusters AunTem (n, m = 1, 2)
- Binding affinities and spectra of complexes formed by dehydrotetrapyrido[20]annulene and small molecules
- Comparison of spectrophotometric and HPLC methods for determination of lipid peroxidation products in rat brain tissues
- Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors
- Mechanism of thermal decomposition of cobalt acetate tetrahydrate
- Three-component, one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones catalyzed by bromodimethylsulfonium bromide