Home Life Sciences Binding affinities and spectra of complexes formed by dehydrotetrapyrido[20]annulene and small molecules
Article
Licensed
Unlicensed Requires Authentication

Binding affinities and spectra of complexes formed by dehydrotetrapyrido[20]annulene and small molecules

  • Z. Wang EMAIL logo and S. Wu
Published/Copyright: August 1, 2007
Become an author with De Gruyter Brill

Abstract

Theoretical study on the binding affinities of dehydrotetrapyrido[20] annulene to the alkene and aromatic molecules was performed using the AM1 and DFT methods. It indicated that the host possesses the ability to bind the above molecules since the binding energies of the complexes were negative. The complexes were stabilized via the hydrogen bonding, static effect, and π — π stacking interaction between the host and guest molecules. Based on the B3LYP/3-21G optimized geometries, the electronic, IR, and NMR spectra were calculated using the INDO/CIS, AM1, and B3LYP/3-21G methods, respectively. Due to the hydrogen bonding, the first absorption maxima in the electronic spectra of studied complexes were blue-shifted, whereas the main IR frequencies for some of the complexes were red-shifted. At the same time, the chemical shifts of carbon atoms forming the bonds in the complexes were lower, compared to those of the host.

[1] Gallant, A. J., Hui, J. K. H., Zahariev, F. E., Wang, Y. A., and MacLachlan, M. J., J. Org. Chem. 70, 7936 (2005). http://dx.doi.org/10.1021/jo050742g10.1021/jo050742gSearch in Google Scholar PubMed

[2] Nomoto, A., Sonoda, M., Yamaguchi, Y., Ichikawa, T., Hirose, K., and Tobe, Y., J. Org. Chem. 71, 401 (2006). http://dx.doi.org/10.1021/jo051969e10.1021/jo051969eSearch in Google Scholar PubMed

[3] Lagona, J., Wagner, B. D., and Isaacs, J., J. Org. Chem. 71, 1181 (2006). http://dx.doi.org/10.1021/jo052294i10.1021/jo052294iSearch in Google Scholar PubMed

[4] Lagona, J., Fettinger, J. C., and Isaacs, L., J. Org. Chem. 70, 10381 (2005). http://dx.doi.org/10.1021/jo051655r10.1021/jo051655rSearch in Google Scholar PubMed

[5] Sokolov, A. N., Friscic, T., and MacGillivray, L. R., J. Am. Chem. Soc. 128, 2806 (2006). http://dx.doi.org/10.1021/ja057939a10.1021/ja057939aSearch in Google Scholar PubMed

[6] Enozawa, H., Hasegawa, M., Takamatsu, D., Fukui, K., and Iyoda, M., Org. Lett. 8, 1917 (2006). http://dx.doi.org/10.1021/ol060553010.1021/ol0605530Search in Google Scholar PubMed

[7] Sugiura, H., Takahira, Y., and Yamaguchi, M., J. Org. Chem. 70, 5698 (2005). http://dx.doi.org/10.1021/jo050732f10.1021/jo050732fSearch in Google Scholar PubMed

[8] Baxter, P. N. W. and Dali-Youcef, R., J. Org. Chem. 70, 4935 (2005). http://dx.doi.org/10.1021/jo040276f10.1021/jo040276fSearch in Google Scholar PubMed

[9] Chen, S. C., Teng, Q. W., and Wu, S., Cent. Eur. J. Chem. 4, 223 (2006). http://dx.doi.org/10.2478/s11532-006-0013-510.2478/s11532-006-0013-5Search in Google Scholar

[10] Wu, S., Teng, Q. W., Chen, X. F., and Zhou, R. H., Chem. J. Chin. Univ. 24, 1271 (2003) (in Chinese). Search in Google Scholar

[11] Qi, L. Y., Teng, Q. W., Wu, S., and Liu, Z. Z., Chin. J. Struct. Chem. 24, 537 (2005). Search in Google Scholar

[12] Wu, S. and Teng, Q. W., Chin. J. Chem. Phys. 19, 76 (2006). Search in Google Scholar

[13] Zhu, L. L., Teng, Q. W., and Wu, S., Chem. J. Chin. Univ. 27, 680 (2006) (in Chinese). Search in Google Scholar

[14] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Jr., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., and Pople, J. A., Gaussian 03, Revision B 01. Gaussian Inc., Pittsburgh, 2003. Search in Google Scholar

[15] Ridley, J. and Zerner, M. C., Theor. Chim. Acta 32, 111 (1973). http://dx.doi.org/10.1007/BF0052848410.1007/BF00528484Search in Google Scholar

[16] Head, J. D. and Zerner, M. C., Chem. Phys. Lett. 131, 359 (1986). http://dx.doi.org/10.1016/0009-2614(86)87166-410.1016/0009-2614(86)87166-4Search in Google Scholar

[17] Head, J. D. and Zerner, M. C., Chem. Phys. Lett. 122, 264 (1985). http://dx.doi.org/10.1016/0009-2614(85)80574-110.1016/0009-2614(85)80574-1Search in Google Scholar

[18] Thompson, M. A. and Zerner, M. C., J. Am. Chem. Soc. 113, 8210 (1991). http://dx.doi.org/10.1021/ja00022a00310.1021/ja00022a003Search in Google Scholar

[19] Wu, S. and Teng, Q. W., Chin. J. Struct. Chem. 25, 694 (2006). Search in Google Scholar

[20] Wu, S. and Teng, Q. W., Chin. J. Chem. Phys. 19, 301 (2006). Search in Google Scholar

[21] Chen, J., Chen, S. C., and Teng, Q. W., J. Indian Chem. Soc. 84, 263 (2007). Search in Google Scholar

[22] Wu, S. and Teng, Q. W., Int. J. Quantum Chem. 106, 526 (2006). http://dx.doi.org/10.1002/qua.2076110.1002/qua.20761Search in Google Scholar

[23] Teng, Q. W. and Wu, S., Int. J. Quantum Chem. 104, 279 (2005). http://dx.doi.org/10.1002/qua.2060410.1002/qua.20604Search in Google Scholar

[24] Teng, Q. W. and Wu, S., J. Mol. Struct.: THEOCHEM 756, 103 (2005). http://dx.doi.org/10.1016/j.theochem.2005.08.01610.1016/j.theochem.2005.08.016Search in Google Scholar

Published Online: 2007-8-1
Published in Print: 2007-8-1

© 2007 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Step by step towards understanding gold glyconanoparticles as elements of the nanoworld
  2. Structure—activity relationships for in vitro oxime reactivation of chlorpyrifos-inhibited acetylcholinesterase
  3. Separation and characterization of products from thermal cracking of individual and mixed polyalkenes
  4. Mobility of important toxic analytes in urban dust and simulated air filters determined by sequential extraction and GFAAS/ICP-OES methods
  5. Effect of addition of ameliorative materials on the distribution of As, Cd, Pb, and Zn in extractable soil fractions
  6. Effect of gamma irradiation on trichromatic values of spices
  7. Homo- and heteronuclear complexes of a new, vicinal dioxime ligand
  8. Synthesis of new triphenodithiazine- and indolocarbazolediones of biological interest
  9. Dielectric relaxation of butyl acrylate—alcohol mixtures using time domain reflectometry
  10. Ab initio study of small coinage metal telluride clusters AunTem (n, m = 1, 2)
  11. Binding affinities and spectra of complexes formed by dehydrotetrapyrido[20]annulene and small molecules
  12. Comparison of spectrophotometric and HPLC methods for determination of lipid peroxidation products in rat brain tissues
  13. Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors
  14. Mechanism of thermal decomposition of cobalt acetate tetrahydrate
  15. Three-component, one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones catalyzed by bromodimethylsulfonium bromide
Downloaded on 14.1.2026 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-007-0039-y/html?lang=en
Scroll to top button