Home Life Sciences Ab initio study of small coinage metal telluride clusters AunTem (n, m = 1, 2)
Article
Licensed
Unlicensed Requires Authentication

Ab initio study of small coinage metal telluride clusters AunTem (n, m = 1, 2)

  • Q. Rong EMAIL logo , F. Liu , X. Li , Y. Zhao and X. Jing
Published/Copyright: August 1, 2007
Become an author with De Gruyter Brill

Abstract

The geometries of the most stable isomers of gold telluride systems AuTe, Au2Te, and AuTe2 are determined using the MP2 method. The aspect of gold—telluride interaction, the electron correlation, and relativistic effects on geometry and stability are investigated at the MP2 and CCSD(T) theoretical levels. The results show that the electron correlation and relativistic effects are responsible not only for gold—gold attraction but also for additional gold—telluride interaction. The gold—telluride interaction is strong enough to modify the known pattern of bare gold clusters. Both effects are essential for determining the geometry and relative stability of this type of systems.

[1] Roof, L. C. and Kolis, J. W., Chem. Rev. 93, 1037 (1993). http://dx.doi.org/10.1021/cr00019a01010.1021/cr00019a010Search in Google Scholar

[2] Li, J. and Pyykkö, P., Chem. Phys. Lett. 197, 586 (1992). http://dx.doi.org/10.1016/0009-2614(92)85820-Z10.1016/0009-2614(92)85820-ZSearch in Google Scholar

[3] Alemany, P., Novoa, J. J., and Bengtsson, L., Int. J. Quantum Chem. 52, 1 (1994). http://dx.doi.org/10.1002/qua.56052010210.1002/qua.560520102Search in Google Scholar

[4] Bagatur’yants, A. A., Safonov, A. A., Stoll, H., and Werner, H.-J., J. Chem. Phys. 109, 3096 (1998). http://dx.doi.org/10.1063/1.47690210.1063/1.476902Search in Google Scholar

[5] Bravo-Pérez, G. and Garzón, I. L., J. Mol. Struct. (THEOCHEM) 619, 79 (2002). http://dx.doi.org/10.1016/S0166-1280(02)00548-110.1016/S0166-1280(02)00548-1Search in Google Scholar

[6] Zhao, Y. F., Jing, X. G., and Su, W. H., J. Mol. Struct. (THEOCHEM) 587, 43 (2002). http://dx.doi.org/10.1016/S0166-1280(02)00092-110.1016/S0166-1280(02)00092-1Search in Google Scholar

[7] Rong, Q.-M. S., Zhao, Y. F., Jing, X. G., Li, X. Y., and Su, W. H., Int. J. Quantum Chem. 100, 293 (2004). http://dx.doi.org/10.1002/qua.2017810.1002/qua.20178Search in Google Scholar

[8] Rong, Q.-M. S., Zhao, Y. F., Jing, X. G., Li, X. Y., and Su, W. H., J. Mol. Struct. (THEOCHEM) 717, 91 (2005). http://dx.doi.org/10.1016/j.theochem.2004.09.02610.1016/j.theochem.2004.09.026Search in Google Scholar

[9] Rong, Q.-M. S., Zhao, Y. F., Jing, X. G., Liu, F. L., Li, X. Y., and Su, W. H., Aust. J. Chem. 58, 792 (2005). http://dx.doi.org/10.1071/CH0513310.1071/CH05133Search in Google Scholar

[10] Hay, P. J. and Wadt, W. R., J. Chem. Phys. 82, 270 (1985). http://dx.doi.org/10.1063/1.44879910.1063/1.448799Search in Google Scholar

[11] Pyykkö, P. and Mendizabal, F., Inorg. Chem. 37, 3018 (1998). http://dx.doi.org/10.1021/ic980121o10.1021/ic980121oSearch in Google Scholar

[12] Bergner, A., Dolg, M., Küchle, W., Stoll, H., and Preuss, H., Mol. Phys. 80, 1431 (1993). http://dx.doi.org/10.1080/0026897930010312110.1080/00268979300103121Search in Google Scholar

[13] Heinemann, C. and Koch, W., Mol. Phys. 92, 463 (1997). http://dx.doi.org/10.1080/00268979717020210.1080/002689797170202Search in Google Scholar

[14] Schwerdtfeger, P., Dolg, M., Schwarz, W. H. E., Bowmaker, G. A., and Boyd, P. D. W., J. Chem. Phys. 91, 1762 (1989). http://dx.doi.org/10.1063/1.45708210.1063/1.457082Search in Google Scholar

[15] http://www.theochem.uni-stuttgart.de/ Search in Google Scholar

[16] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, J. A., Jr., Stratmann, R. E., Burant, J. C., Dapprich, S., Millam, J. M., Daniels, A. D., Kudin, K. N., Strain, M. C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G. A., Ayala, P. Y., Cui, Q., Morokuma, K., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Cioslowski, J., Ortiz, J. V., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P. M. W., Johnson, B. G., Chen, W., Wong, M. W., Andres, J. L., Head-Gordon, M., Replogle, E. S., and Pople, J. A., Gaussian 98W. Gaussian, Inc., Pittsburgh, PA, 1998. Search in Google Scholar

[17] Huber, K. P. and Herzberg, G., Constants of Diatomic Molecules. Van Nostrand, New York, 1979. 10.1007/978-1-4757-0961-2_2Search in Google Scholar

[18] Bravo-Pérez, G., Garzón, I. L., and Novaro, O., J. Mol. Struct. (THEOCHEM) 493, 225 (1999). http://dx.doi.org/10.1016/S0166-1280(99)00243-210.1016/S0166-1280(99)00243-2Search in Google Scholar

[19] Bravo-Pérez, G., Garzón, I. L., and Novaro, O., Chem. Phys. Lett. 313, 655 (1999). http://dx.doi.org/10.1016/S0009-2614(99)00957-410.1016/S0009-2614(99)00957-4Search in Google Scholar

[20] Schwerdtfeger, P. and Boyd, P. D. W., Inorg. Chem. 31, 327 (1992). http://dx.doi.org/10.1021/ic00028a03910.1021/ic00028a039Search in Google Scholar

[21] Pyykkö, P., Chem. Rev. 97, 597 (1997). http://dx.doi.org/10.1021/cr940396v10.1021/cr940396vSearch in Google Scholar

[22] Barysz, M. and Pyykkö, P., Chem. Phys. Lett. 285, 398 (1998). http://dx.doi.org/10.1016/S0009-2614(98)00025-610.1016/S0009-2614(98)00025-6Search in Google Scholar

[23] Pyykkö, P. and Zhao, Y.-F., Angew. Chem. 103, 622 (1991). Search in Google Scholar

[24] Pyykkö, P., Runeberg, N., and Mendizabal, F., Chem. Eur. J. 3, 1451 (1997). Search in Google Scholar

[25] Pyykkö, P., Angew. Chem., Int. Ed. Engl. 43, 4412 (2004). http://dx.doi.org/10.1002/anie.20030062410.1002/anie.200300624Search in Google Scholar PubMed

Published Online: 2007-8-1
Published in Print: 2007-8-1

© 2007 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Step by step towards understanding gold glyconanoparticles as elements of the nanoworld
  2. Structure—activity relationships for in vitro oxime reactivation of chlorpyrifos-inhibited acetylcholinesterase
  3. Separation and characterization of products from thermal cracking of individual and mixed polyalkenes
  4. Mobility of important toxic analytes in urban dust and simulated air filters determined by sequential extraction and GFAAS/ICP-OES methods
  5. Effect of addition of ameliorative materials on the distribution of As, Cd, Pb, and Zn in extractable soil fractions
  6. Effect of gamma irradiation on trichromatic values of spices
  7. Homo- and heteronuclear complexes of a new, vicinal dioxime ligand
  8. Synthesis of new triphenodithiazine- and indolocarbazolediones of biological interest
  9. Dielectric relaxation of butyl acrylate—alcohol mixtures using time domain reflectometry
  10. Ab initio study of small coinage metal telluride clusters AunTem (n, m = 1, 2)
  11. Binding affinities and spectra of complexes formed by dehydrotetrapyrido[20]annulene and small molecules
  12. Comparison of spectrophotometric and HPLC methods for determination of lipid peroxidation products in rat brain tissues
  13. Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors
  14. Mechanism of thermal decomposition of cobalt acetate tetrahydrate
  15. Three-component, one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones catalyzed by bromodimethylsulfonium bromide
Downloaded on 14.1.2026 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-007-0038-z/pdf
Scroll to top button