Abstract
A new symmetrical vicinal dioxime, N,N′-bis-{4-[[(2-hydroxyphenyl)methylene]hydrazinecarbonyl]phenyl}diaminoglyoxime (LH4), was prepared by reacting anti-dichloroglyoxime with salicylaldehyde 4-aminobenzoylhydrazone. The reaction of ligand with Ni2+ salts gave mono-and homopentanuclear complexes, [Ni(LH3)2] and [Ni5(LH)2X2]. Furthermore, heteropentanuclear complexes of dioxime ligand, [Cu4Ni(LH)2X4], were prepared by the reaction of [Ni(LH3)2)] with Cu2+ salt and a monodentate ligand (X = SCN−, CN−, or N3−). The structures of both the new symmetrical vicinal dioxime and its complexes were identified by elemental analyses, IR, 1H NMR, UV-VIS spectra, and magnetic susceptibility. The elemental analyses and spectral data indicate that the hydrazone side of ligand acts as a O,N,O′ tridentate and the fourth position is occupied with monodentate anion such as SCN−, CN−, N3−.
[1] Kahn, O., Angew. Chem., Int. Ed. Engl. 24, 834 (1985). http://dx.doi.org/10.1002/anie.19850834110.1002/anie.198508341Search in Google Scholar
[2] Simmons, M. G., Merril, C. L., Wilson, L. J., Bottomly, L. A., and Kadish, K. M., J. Chem. Soc., Dalton Trans. 10, 1827 (1980). http://dx.doi.org/10.1039/dt980000182710.1039/dt9800001827Search in Google Scholar
[3] Smith, A. G., Tasker, P. A., and White, D. J., Coord. Chem. Rev. 241, 61 (2003). http://dx.doi.org/10.1016/S0010-8545(02)00310-710.1016/S0010-8545(02)00310-7Search in Google Scholar
[4] Cheng, M. Y., De, B., Almstead, N. G., Pikul, S., Dowty, M. E., Dietsch, C. R., Dunaway, C. M., Gu, F., Hsieh, L. C., Janusz, M. J., Taiwo, Y. O., Natchus, M. G., Hudlicky, T., and Mandel, M., J. Med. Chem. 42, 5426 (1999). http://dx.doi.org/10.1021/jm990469910.1021/jm9904699Search in Google Scholar
[5] Kitajima, N. and Moro-oka, Y., Chem. Rev. 94, 737 (1994). http://dx.doi.org/10.1021/cr00027a01010.1021/cr00027a010Search in Google Scholar
[6] Garnovskii, A. D. and Kharisov, B. I., Synthetic Coordination and Organometallic Chemistry. Marcel Dekker, New York, 2003. 10.1201/9780203911525Search in Google Scholar
[7] Chaudhuri, P., Coord. Chem. Rev. 243, 143 (2003). http://dx.doi.org/10.1016/S0010-8545(03)00081-X10.1016/S0010-8545(03)00081-XSearch in Google Scholar
[8] Fenton, D. E., Biocoordination Chemistry. Oxford University Press, Oxford (1997). Search in Google Scholar
[9] Kuse, S., Motomizu, S., and Tôei, K., Anal. Chim. Acta 70, 65 (1974). http://dx.doi.org/10.1016/S0003-2670(01)82911-110.1016/S0003-2670(01)82911-1Search in Google Scholar
[10] Nemeth, S. and Simondi, L., J. Mol. Catal. A 14, 87 (1982). http://dx.doi.org/10.1016/0304-5102(82)80051-510.1016/0304-5102(82)80051-5Search in Google Scholar
[11] Gelmini, L. and Stephan, D. W., Inorg. Chem. 25, 1222 (1986). http://dx.doi.org/10.1021/ic00228a03010.1021/ic00228a030Search in Google Scholar
[12] Gup, R., Russ. J. Coord. Chem. 32, 99 (2006). http://dx.doi.org/10.1134/S107032840602004710.1134/S1070328406020047Search in Google Scholar
[13] Brintzinger, H. and Titzmann, R., Chem. Ber. 85, 344 (1952). http://dx.doi.org/10.1002/cber.1952085041310.1002/cber.19520850413Search in Google Scholar
[14] Komurcu, S. G., Rollas, S., Ulgen, M., Gorrod, J. W., and Cevikbas, A., Boll. Chim. Farm. 134, 375 (1995). Search in Google Scholar
[15] Gup, R. and Beduk, A. D., Synth. React. Inorg. Met.-Org. Chem. 32, 1043 (2002). http://dx.doi.org/10.1081/SIM-12000562110.1081/SIM-120005621Search in Google Scholar
[16] Canpolat, E., Kaya, M., and Yazici, A., Russ. J. Coord. Chem. 30, 87 (2004). http://dx.doi.org/10.1023/B:RUCO.0000015079.11656.9410.1023/B:RUCO.0000015079.11656.94Search in Google Scholar
[17] Gup, R. and Kirkan, B., Spectrochim. Acta A 62, 1188 (2005). http://dx.doi.org/10.1016/j.saa.2005.04.01510.1016/j.saa.2005.04.015Search in Google Scholar
[18] Saha, M. K., Sen, S., Gupta, T., Mitra, S., Kundu, P., and Karmakar, A. K., Trans. Met. Chem. 23, 635 (1998). http://dx.doi.org/10.1023/A:100691512698810.1023/A:1006915126988Search in Google Scholar
[19] Voloshin, Y. Z., Varzatskii, O. A., Strizhakova, N. G., and Tkachenko, E. Yu., Inorg. Chim. Acta 299, 104 (2000). http://dx.doi.org/10.1016/S0020-1693(99)00472-710.1016/S0020-1693(99)00472-7Search in Google Scholar
[20] Bilgin, A., Serbest, K., and Gök, Y., Trans. Met. Chem. 25, 63 (2000). http://dx.doi.org/10.1023/A:100701643245910.1023/A:1007016432459Search in Google Scholar
[21] Gök, Y. and Kantekin, H., Polyhedron 16, 2413 (1997). http://dx.doi.org/10.1016/S0277-5387(96)00560-810.1016/S0277-5387(96)00560-8Search in Google Scholar
[22] Gup, R., Kirkan, B., and Giziroglu, E., Chin. J. Chem. 24, 199 (2006). http://dx.doi.org/10.1002/cjoc.20069003810.1002/cjoc.200690038Search in Google Scholar
[23] Gup, R. and Kirkan, B., Spectrochim. Acta, Part A 64, 809 (2006). http://dx.doi.org/10.1016/j.saa.2005.08.00810.1016/j.saa.2005.08.008Search in Google Scholar
[24] Sreeja, P. B., Prathapachandra Kurup, M. R., Kishare, A., and Jasmin, C., Polyhedron 23, 575 (2004). http://dx.doi.org/10.1016/j.poly.2003.11.00510.1016/j.poly.2003.11.005Search in Google Scholar
[25] Ainscough, E. W., Brodie, A. M., Denny, W. A., Finlay, G. J., Gothe, S. A., and Ranford, J. D., J. Inorg. Biochem. 77, 125 (1999). http://dx.doi.org/10.1016/S0162-0134(99)00131-210.1016/S0162-0134(99)00131-2Search in Google Scholar
[26] Koh, L. L., Kon, O. L., Loh, K. W., Long, Y. C., Ranford, J. D., Tan, A. L. C., and Tjan, Y. Y., J. Inorg. Biochem. 72, 155 (1998). http://dx.doi.org/10.1016/S0162-0134(98)10075-210.1016/S0162-0134(98)10075-2Search in Google Scholar
[27] Sreekanth, A. and Prathapachandra Kurup, M. R., Polyhedron 22, 3321 (2003). http://dx.doi.org/10.1016/j.poly.2003.07.01110.1016/j.poly.2003.07.011Search in Google Scholar
[28] Gupta, R., Lal, T. K., and Mukherjee, R., Polyhedron 21, 1245 (2002). http://dx.doi.org/10.1016/S0277-5387(02)01014-810.1016/S0277-5387(02)01014-8Search in Google Scholar
[29] Kandaz, M., Yilmaz, I., Keskin, S., and Koca, A., Polyhedron 21, 825 (2002). http://dx.doi.org/10.1016/S0277-5387(02)00860-410.1016/S0277-5387(02)00860-4Search in Google Scholar
[30] Karaböcek, N. and Karaböcek, S., Trans. Met. Chem. 24, 84 (1999). http://dx.doi.org/10.1023/A:100692232668010.1023/A:1006922326680Search in Google Scholar
© 2007 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Step by step towards understanding gold glyconanoparticles as elements of the nanoworld
- Structure—activity relationships for in vitro oxime reactivation of chlorpyrifos-inhibited acetylcholinesterase
- Separation and characterization of products from thermal cracking of individual and mixed polyalkenes
- Mobility of important toxic analytes in urban dust and simulated air filters determined by sequential extraction and GFAAS/ICP-OES methods
- Effect of addition of ameliorative materials on the distribution of As, Cd, Pb, and Zn in extractable soil fractions
- Effect of gamma irradiation on trichromatic values of spices
- Homo- and heteronuclear complexes of a new, vicinal dioxime ligand
- Synthesis of new triphenodithiazine- and indolocarbazolediones of biological interest
- Dielectric relaxation of butyl acrylate—alcohol mixtures using time domain reflectometry
- Ab initio study of small coinage metal telluride clusters AunTem (n, m = 1, 2)
- Binding affinities and spectra of complexes formed by dehydrotetrapyrido[20]annulene and small molecules
- Comparison of spectrophotometric and HPLC methods for determination of lipid peroxidation products in rat brain tissues
- Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors
- Mechanism of thermal decomposition of cobalt acetate tetrahydrate
- Three-component, one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones catalyzed by bromodimethylsulfonium bromide
Articles in the same Issue
- Step by step towards understanding gold glyconanoparticles as elements of the nanoworld
- Structure—activity relationships for in vitro oxime reactivation of chlorpyrifos-inhibited acetylcholinesterase
- Separation and characterization of products from thermal cracking of individual and mixed polyalkenes
- Mobility of important toxic analytes in urban dust and simulated air filters determined by sequential extraction and GFAAS/ICP-OES methods
- Effect of addition of ameliorative materials on the distribution of As, Cd, Pb, and Zn in extractable soil fractions
- Effect of gamma irradiation on trichromatic values of spices
- Homo- and heteronuclear complexes of a new, vicinal dioxime ligand
- Synthesis of new triphenodithiazine- and indolocarbazolediones of biological interest
- Dielectric relaxation of butyl acrylate—alcohol mixtures using time domain reflectometry
- Ab initio study of small coinage metal telluride clusters AunTem (n, m = 1, 2)
- Binding affinities and spectra of complexes formed by dehydrotetrapyrido[20]annulene and small molecules
- Comparison of spectrophotometric and HPLC methods for determination of lipid peroxidation products in rat brain tissues
- Enantioselective extraction of mandelic acid enantiomers by L-dipentyl tartrate and β-cyclodextrin as binary chiral selectors
- Mechanism of thermal decomposition of cobalt acetate tetrahydrate
- Three-component, one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones catalyzed by bromodimethylsulfonium bromide