Abstract
The characteristics of anodic electrochemical dissolution of chalcopyrite (CuFeS2) powder in hydrochloric acid medium with sodium chloride have been studied. Cyclic voltammetry and chronopotentiometry of immobilized microparticles using paraffin-impregnated graphite electrode was employed. Present work is focused on electrochemical identification of chalcopyrite cathodic and anodic reaction products within the potential range of −0.7 to +0.8 V (vs. SCE) in hydrochloric acid solution containing sodium chloride and/or copper(II) chloride.
[1] Hiroyoshi, N., Kuroiwa, S., Miki, H., Tsunekawa, M., and Hirajima, T., Hydrometallurgy 74, 103 (2004). http://dx.doi.org/10.1016/j.hydromet.2004.01.00310.1016/j.hydromet.2004.01.003Suche in Google Scholar
[2] Bartlet, R. W., Willson, D. B., Savage, B. J., and Weseley, R. J., in Hydrometallurgy Reactor Design and Kinetics, pp. 227. The American Institute of Mining, Metallurgical and Petroleum Engineers (AIME), New York, 1986. Suche in Google Scholar
[3] Arce, M. E. and Gonzáles, I., Int. J. Miner. Processes 67, 17 (2002). http://dx.doi.org/10.1016/S0301-7516(02)00003-010.1016/S0301-7516(02)00003-0Suche in Google Scholar
[4] Antonijević, M. M. and Bogdanović, G. D., Hydrometallurgy 73, 254 (2004). 10.1016/j.hydromet.2003.11.003Suche in Google Scholar
[5] Lu, Z. Y., Jeffrey, M. I., and Lawson, F., Hydrometallurgy 56, 189 (2000). http://dx.doi.org/10.1016/S0304-386X(00)00075-X10.1016/S0304-386X(00)00075-XSuche in Google Scholar
[6] Vargas, T. and Inman, D., J. Electroanal. Chem. 119, 25 (1981). http://dx.doi.org/10.1016/S0022-0728(81)80121-010.1016/S0022-0728(81)80121-0Suche in Google Scholar
[7] Lázaro, I., Martínez-Medina, N., Rodríguez, I., Arce, E., and Gonzáles, I., Hydrometallurgy 38, 277 (1995). http://dx.doi.org/10.1016/0304-386X(94)00070-J10.1016/0304-386X(94)00070-JSuche in Google Scholar
[8] Elsherief, A. E., Miner. Eng. 15, 5 (2002). http://dx.doi.org/10.1016/S0892-6875(01)00208-410.1016/S0892-6875(01)00208-4Suche in Google Scholar
[9] Hiroyoshi, N., Miki, H., Hirajima, T., and Tsunekawa, M., Hydrometallurgy 57, 31 (2000). http://dx.doi.org/10.1016/S0304-386X(00)00089-X10.1016/S0304-386X(00)00089-XSuche in Google Scholar
[10] Mikhlin, Y. L., Tomashevich, Y. V., Asanov, I. P., Okotrub, A. V., Varnek, V. A., and Vyalikh, D. V., Appl. Surf. Sci. 225, 395 (2004). http://dx.doi.org/10.1016/j.apsusc.2003.10.03010.1016/j.apsusc.2003.10.030Suche in Google Scholar
[11] Lamache, M. and Bauer, D., Anal. Chem. 51, 1320 (1979). http://dx.doi.org/10.1021/ac50044a04510.1021/ac50044a045Suche in Google Scholar
[12] McMillan, R. S., MacKinnon, D. J., and Dutrizac, J. E., J. Appl. Electrochem. 12, 743 (1982). http://dx.doi.org/10.1007/BF0061749510.1007/BF00617495Suche in Google Scholar
[13] Hiroyoshi, N., Miki, H., Hirajima, T., and Tsunekawa, M., Hydrometallurgy 60, 185 (2001). http://dx.doi.org/10.1016/S0304-386X(00)00155-910.1016/S0304-386X(00)00155-9Suche in Google Scholar
© 2006 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Influence of medium on the kinetics of oxidation of iron(II) ion with t-butyl hydroperoxide
- Synthesis of new thiazolo[2,3-b]pyrimidine derivatives of pharmaceutical interest
- Enthalpic analysis of the CaTiSiO5 system
- Kinetic, spectrophotometric determination of nanogram levels of manganese(II) using catalytic azo dye—potassium periodate—1,10-phenanthroline system
- Application of a ternary complex of tungsten(VI) with 4-nitrocatechol and thiazolyl blue for extraction-spectrophotometric determination of tungsten
- Determination of risperidone at picogram level in human urine by luminol—H2O2 chemiluminescence
- Electrochemical dissolution of chalcopyrite studied by voltammetry of immobilized microparticles
- Colon tissue concentrations of copper, iron, selenium, and zinc in colorectal carcinoma patients
- Structure of tetrakis(pyridinioacetate) neodymium(III) tetrahydrate perchlorate
- Thermally stable oligomer—Metal complexes based on oligo-ortho-aminophenol and oligophenylazomethinephenol
- Adsorption of SO2 on alumina
- One-pot, three-component synthesis of secondary amines and trisubstituted hydrazines from ketones
- Synthesis of α,α′-bis(R-benzylidene)cycloalkanones catalyzed by potassium hydrogen sulfate under solvent-free conditions
- Electrical conductivity of the molten KF—K2TaF7 system
- New substituted mono-and bis(imidazolyl)pyridines and their application in nitroaldolisation reaction
Artikel in diesem Heft
- Influence of medium on the kinetics of oxidation of iron(II) ion with t-butyl hydroperoxide
- Synthesis of new thiazolo[2,3-b]pyrimidine derivatives of pharmaceutical interest
- Enthalpic analysis of the CaTiSiO5 system
- Kinetic, spectrophotometric determination of nanogram levels of manganese(II) using catalytic azo dye—potassium periodate—1,10-phenanthroline system
- Application of a ternary complex of tungsten(VI) with 4-nitrocatechol and thiazolyl blue for extraction-spectrophotometric determination of tungsten
- Determination of risperidone at picogram level in human urine by luminol—H2O2 chemiluminescence
- Electrochemical dissolution of chalcopyrite studied by voltammetry of immobilized microparticles
- Colon tissue concentrations of copper, iron, selenium, and zinc in colorectal carcinoma patients
- Structure of tetrakis(pyridinioacetate) neodymium(III) tetrahydrate perchlorate
- Thermally stable oligomer—Metal complexes based on oligo-ortho-aminophenol and oligophenylazomethinephenol
- Adsorption of SO2 on alumina
- One-pot, three-component synthesis of secondary amines and trisubstituted hydrazines from ketones
- Synthesis of α,α′-bis(R-benzylidene)cycloalkanones catalyzed by potassium hydrogen sulfate under solvent-free conditions
- Electrical conductivity of the molten KF—K2TaF7 system
- New substituted mono-and bis(imidazolyl)pyridines and their application in nitroaldolisation reaction