Startseite Lebenswissenschaften Electrochemical dissolution of chalcopyrite studied by voltammetry of immobilized microparticles
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Electrochemical dissolution of chalcopyrite studied by voltammetry of immobilized microparticles

  • L’. Pikna EMAIL logo , L. Lux und T. Grygar
Veröffentlicht/Copyright: 1. August 2006
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The characteristics of anodic electrochemical dissolution of chalcopyrite (CuFeS2) powder in hydrochloric acid medium with sodium chloride have been studied. Cyclic voltammetry and chronopotentiometry of immobilized microparticles using paraffin-impregnated graphite electrode was employed. Present work is focused on electrochemical identification of chalcopyrite cathodic and anodic reaction products within the potential range of −0.7 to +0.8 V (vs. SCE) in hydrochloric acid solution containing sodium chloride and/or copper(II) chloride.

[1] Hiroyoshi, N., Kuroiwa, S., Miki, H., Tsunekawa, M., and Hirajima, T., Hydrometallurgy 74, 103 (2004). http://dx.doi.org/10.1016/j.hydromet.2004.01.00310.1016/j.hydromet.2004.01.003Suche in Google Scholar

[2] Bartlet, R. W., Willson, D. B., Savage, B. J., and Weseley, R. J., in Hydrometallurgy Reactor Design and Kinetics, pp. 227. The American Institute of Mining, Metallurgical and Petroleum Engineers (AIME), New York, 1986. Suche in Google Scholar

[3] Arce, M. E. and Gonzáles, I., Int. J. Miner. Processes 67, 17 (2002). http://dx.doi.org/10.1016/S0301-7516(02)00003-010.1016/S0301-7516(02)00003-0Suche in Google Scholar

[4] Antonijević, M. M. and Bogdanović, G. D., Hydrometallurgy 73, 254 (2004). 10.1016/j.hydromet.2003.11.003Suche in Google Scholar

[5] Lu, Z. Y., Jeffrey, M. I., and Lawson, F., Hydrometallurgy 56, 189 (2000). http://dx.doi.org/10.1016/S0304-386X(00)00075-X10.1016/S0304-386X(00)00075-XSuche in Google Scholar

[6] Vargas, T. and Inman, D., J. Electroanal. Chem. 119, 25 (1981). http://dx.doi.org/10.1016/S0022-0728(81)80121-010.1016/S0022-0728(81)80121-0Suche in Google Scholar

[7] Lázaro, I., Martínez-Medina, N., Rodríguez, I., Arce, E., and Gonzáles, I., Hydrometallurgy 38, 277 (1995). http://dx.doi.org/10.1016/0304-386X(94)00070-J10.1016/0304-386X(94)00070-JSuche in Google Scholar

[8] Elsherief, A. E., Miner. Eng. 15, 5 (2002). http://dx.doi.org/10.1016/S0892-6875(01)00208-410.1016/S0892-6875(01)00208-4Suche in Google Scholar

[9] Hiroyoshi, N., Miki, H., Hirajima, T., and Tsunekawa, M., Hydrometallurgy 57, 31 (2000). http://dx.doi.org/10.1016/S0304-386X(00)00089-X10.1016/S0304-386X(00)00089-XSuche in Google Scholar

[10] Mikhlin, Y. L., Tomashevich, Y. V., Asanov, I. P., Okotrub, A. V., Varnek, V. A., and Vyalikh, D. V., Appl. Surf. Sci. 225, 395 (2004). http://dx.doi.org/10.1016/j.apsusc.2003.10.03010.1016/j.apsusc.2003.10.030Suche in Google Scholar

[11] Lamache, M. and Bauer, D., Anal. Chem. 51, 1320 (1979). http://dx.doi.org/10.1021/ac50044a04510.1021/ac50044a045Suche in Google Scholar

[12] McMillan, R. S., MacKinnon, D. J., and Dutrizac, J. E., J. Appl. Electrochem. 12, 743 (1982). http://dx.doi.org/10.1007/BF0061749510.1007/BF00617495Suche in Google Scholar

[13] Hiroyoshi, N., Miki, H., Hirajima, T., and Tsunekawa, M., Hydrometallurgy 60, 185 (2001). http://dx.doi.org/10.1016/S0304-386X(00)00155-910.1016/S0304-386X(00)00155-9Suche in Google Scholar

Published Online: 2006-8-1
Published in Print: 2006-8-1

© 2006 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 22.1.2026 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-006-0051-7/html
Button zum nach oben scrollen