Abstract
The oxidation of iron(II) with tert-butyl hydroperoxide was investigated in the absence of oxygen in water, methanol, and the dichloromethane—methanol solvent mixture (φr = 2:1). The oxidation rate depends on solvent polarity; measured in the presence of SCN− at constant 0.8 mmol dm−3 HCl, the rate constant increases with the polarity decrease passing from water and methanol to the dichloromethane—methanol solvent mixture. Further, in non-aqueous solutions at this acid concentration the rate constant was higher than the rate constant in the presence of Cl− only. The oxidation rate measured in the [FeCl]2+ complex in dichloromethane—methanol was slow in acidic medium and increased by decreasing the acid concentration. Approaching the physiological pH conditions the rate constant attained the value of an order of magnitude of 103 dm3 mol−1 s−1, while very little alteration of stoichiometry of the oxidation reaction was observed. The rate constant measured in the presence of Cl− strongly depends on electrolyte concentration at concentrations less than 0.5 mmol dm−3 HCl, both in MeOH and the solvent mixture. Based on these results, a possible mechanism of the influence of solvent, acidity, and ligand type on the rate constant is discussed. We assume that the oxidation proceeds by an inner-sphere mechanism considering that the breakdown of the successor inner-sphere complex forming reactive alkoxyl radicals is probably the rate-limiting step.
[1] Quian, S. Y. and Buettner, G. R., Free Radical Biol. Med. 26, 1447 (1999). http://dx.doi.org/10.1016/S0891-5849(99)00002-710.1016/S0891-5849(99)00002-7Search in Google Scholar
[2] Huang, X., Dai, J., Fournier, J., Ali, A. M., Zhang, Q., and Frenkel, K., Free Radical Biol. Med. 32, 84 (2002). http://dx.doi.org/10.1016/S0891-5849(01)00770-510.1016/S0891-5849(01)00770-5Search in Google Scholar
[3] Ohyashiki, T., Karino, T., and Matsui, K., Biochim. Biophys. Acta 1170, 182 (1993). Search in Google Scholar
[4] Schafer, F. Q. and Buettner, G. R., Free Radical Biol. Med. 28, 1175 (2000). http://dx.doi.org/10.1016/S0891-5849(00)00319-110.1016/S0891-5849(00)00319-1Search in Google Scholar
[5] Bucher, J. R., Tien, M., and Aust, S. D., Biochem. Biophys. Res. Commun. 111, 777 (1983). http://dx.doi.org/10.1016/0006-291X(83)91366-910.1016/0006-291X(83)91366-9Search in Google Scholar
[6] Goddard, J. G. and Sweeney, J. D., Arch. Biochem. Biophys. 259, 372 (1987). http://dx.doi.org/10.1016/0003-9861(87)90503-010.1016/0003-9861(87)90503-0Search in Google Scholar
[7] Ursini, F., Maiorino, M., Hochstein, P., and Ernster, L., Free Radical Biol. Med. 6, 31 (1989). http://dx.doi.org/10.1016/0891-5849(89)90156-110.1016/0891-5849(89)90156-1Search in Google Scholar
[8] Minotti, G. and Aust, S. D., Lipids 27, 219 (1992). http://dx.doi.org/10.1007/BF0253618210.1007/BF02536182Search in Google Scholar
[9] Harris, D. C. and Aisen, P., Biochim. Biophys. Acta 329, 156 (1973). 10.1016/0304-4165(73)90019-6Search in Google Scholar
[10] Ohyashiki, T. and Nunomura, M., Biochim. Biophys. Acta 1484, 241 (2000). 10.1016/S0005-2736(00)00163-2Search in Google Scholar
[11] Bakač, A. and Wang, W.-D., Inorg. React. Mech. 1, 65 (1998). Search in Google Scholar
[12] Flyunt, R., Leitzke, A., Mark, G., Mvula, E., Reisz, E., Schick, R., and von Sonntag, C., J. Phys. Chem., B 107, 7242 (2003) and references cited therein. http://dx.doi.org/10.1021/jp022455b10.1021/jp022455bSearch in Google Scholar
[13] Phulkar, S., Rao, B. S. M., Schuchmann, H.-P., and von Sonntag, C., Z. Naturforsch. 45b, 1425 (1990). 10.1515/znb-1990-1012Search in Google Scholar
[14] Rush, J. D. and Koppenol, W. H., FEBS Lett. 275, 114 (1990). http://dx.doi.org/10.1016/0014-5793(90)81452-T10.1016/0014-5793(90)81452-TSearch in Google Scholar
[15] Mihaljević, B., Katušin-Ražem, B., and Ražem, D., Free Radical Biol. Med. 21, 53 (1996). http://dx.doi.org/10.1016/0891-5849(95)02224-410.1016/0891-5849(95)02224-4Search in Google Scholar
[16] Anon., Training Manual on Food Irradiation Technology and Techniques. IAEA Technical Reports Series No. 114. International Atomic Energy Agency, Vienna, 1970. Search in Google Scholar
[17] Mihaljević, B. and Ražem, D., Croat. Chim. Acta 76, 249 (2003). Search in Google Scholar
[18] Biruš, M., Kujundžić, N., and Pribanić, M., Prog. React. Kinet. 18, 171 (1993). Search in Google Scholar
[19] Welch, K. D., Davis, T. Z., and Aust, S. D., Arch. Biochem. Biophys. 397, 360 (2002). http://dx.doi.org/10.1006/abbi.2001.269410.1006/abbi.2001.2694Search in Google Scholar
[20] Erben-Russ, M., Michael, C., Bors, W., and Saran, M., J. Phys. Chem. 91, 2362 (1987). http://dx.doi.org/10.1021/j100293a03310.1021/j100293a033Search in Google Scholar
[21] Mihaljević, B., Medved-Rogina, B., and Ražem, D., Radiat. Phys. Chem. 55, 593 (1999). http://dx.doi.org/10.1016/S0969-806X(99)00252-210.1016/S0969-806X(99)00252-2Search in Google Scholar
[22] Bennett, E., J. Chem. Soc., Faraday Trans. 86, 3247 (1990). http://dx.doi.org/10.1039/ft990860324710.1039/ft9908603247Search in Google Scholar
[23] Walling, C. and Wagner, P., J. Am. Chem. Soc. 85, 2333 (1963). http://dx.doi.org/10.1021/ja00898a03910.1021/ja00898a039Search in Google Scholar
[24] Avila, D. V., Brown, C. E., Ingold, K. U., and Lusztyk, J., J. Am. Chem. Soc. 115, 466 (1993). http://dx.doi.org/10.1021/ja00055a01510.1021/ja00055a015Search in Google Scholar
[25] Steenken, S. and Neta, P., J. Am. Chem. Soc. 104, 1244 (1982). http://dx.doi.org/10.1021/ja00369a01710.1021/ja00369a017Search in Google Scholar
[26] Stevens, G. C., Clarke, R. M., and Hart, E. J., J. Phys. Chem. 76, 3863 (1972). http://dx.doi.org/10.1021/j100669a03210.1021/j100669a032Search in Google Scholar
[27] Neta, P., Gradkowski, J., and Ross, A. B., J. Phys. Chem. Ref. Data 25, 709 (1996). http://dx.doi.org/10.1063/1.55597810.1063/1.555978Search in Google Scholar
[28] Walling, C. and Wagner, J. P., J. Am. Chem. Soc. 86, 3368 (1964). http://dx.doi.org/10.1021/ja01070a03210.1021/ja01070a032Search in Google Scholar
[29] Gilbert, B. C., Marshall, P. D. R., Norman, R. O. C., Pineda, N., and Williams, P. S., J. Chem. Soc., Perkin Trans. 2 1981, 1392. 10.1039/p29810001392Search in Google Scholar
[30] Reynolds, W. L. and Kolthoff, I. M., J. Phys. Chem. 60, 969 (1956). http://dx.doi.org/10.1021/j150541a03610.1021/j150541a036Search in Google Scholar
[31] Aoshima, H. and Taniguchi, H., Anal. Lett. 16A, 301 (1983). 10.1080/00032718308064467Search in Google Scholar
[32] Rush, J. D., Maskos, Z., and Koppenol, W. H., FEBS Lett. 261, 121 (1990). http://dx.doi.org/10.1016/0014-5793(90)80651-X10.1016/0014-5793(90)80651-XSearch in Google Scholar
[33] Rush, J. D. and Koppenol, W. H., J. Am. Chem. Soc. 110, 4957 (1988). http://dx.doi.org/10.1021/ja00223a01310.1021/ja00223a013Search in Google Scholar
[34] Rahhal, S. and Richter, H. W., J. Am. Chem. Soc. 110, 3126 (1988). http://dx.doi.org/10.1021/ja00218a02210.1021/ja00218a022Search in Google Scholar
[35] Chen, H., Lee, D. J., and Schanus, E. G., Lipids 27, 234 (1992). http://dx.doi.org/10.1007/BF0253618410.1007/BF02536184Search in Google Scholar PubMed
[36] Asmus, K.-D., Moeckel, H., and Henglein, A., J. Phys. Chem. 77, 1218 (1973). http://dx.doi.org/10.1021/j100629a00710.1021/j100629a007Search in Google Scholar
[37] Burchill, C. E. and Ginns, I. S., Can. J. Chem. 48, 2628 (1970). http://dx.doi.org/10.1139/v70-44110.1139/v70-441Search in Google Scholar
[38] Kochi, J. K., in Free Radicals, Vol. 1, pp. 591–683. Wiley-Interscience, New York, 1973. Search in Google Scholar
[39] Ellis, K. J. and Laurence, G. S., Trans. Faraday Soc. 63, 91 (1967). http://dx.doi.org/10.1039/tf967630009110.1039/tf9676300091Search in Google Scholar
[40] Lati, J. and Meyerstein, D., J. Chem. Soc., Dalton Trans. 1978, 1105. 10.1039/dt9780001105Search in Google Scholar
[41] Tadolini, B., Cabrini, L., Menna, C., Pinna, G. G., and Hakim, G., Free Radical Res. 27, 563 (1997). Search in Google Scholar
[42] Cotton, F. A. and Wilkinson, G., Advanced Inorganic Chemistry, 5th Edition. Interscience Publishers, Wiley & Sons, New York, 1988. Search in Google Scholar
[43] Wilkins, R. G., Kinetics and Mechanism of Reactions of Transition Metal Complexes. Allyn and Bacon, Boston, 1991. 10.1002/3527600825Search in Google Scholar
[44] Previtali, C. M., Pure Appl. Chem. 67, 127 (1995). Search in Google Scholar
[45] Hiatt, R. and Traylor, T. G., J. Am. Chem. Soc. 87, 3766 (1965). http://dx.doi.org/10.1021/ja01094a03910.1021/ja01094a039Search in Google Scholar
[46] Traylor, T. G. and Ciccone, J. P., J. Am. Chem. Soc. 111, 8413 (1989). http://dx.doi.org/10.1021/ja00204a01410.1021/ja00204a014Search in Google Scholar
[47] Buettner, G. R., Arch. Biochem. Biophys. 300, 535 (1993). http://dx.doi.org/10.1006/abbi.1993.107410.1006/abbi.1993.1074Search in Google Scholar
[48] Koppenol, W. H., FEBS Lett. 264, 165 (1990). http://dx.doi.org/10.1016/0014-5793(90)80239-F10.1016/0014-5793(90)80239-FSearch in Google Scholar
[49] Meyer, F. K., Monnerat, A. R., Newman, K., and Merbach, A. E., Inorg. Chem. 21, 774 (1982). http://dx.doi.org/10.1021/ic00132a06010.1021/ic00132a060Search in Google Scholar
[50] Rorabacher, D. B., Inorg. Chem. 5, 1891 (1966). http://dx.doi.org/10.1021/ic50045a01210.1021/ic50045a012Search in Google Scholar
[51] Hanlon, M. C. and Seybert, D. W., Free Radical Biol. Med. 23, 712 (1997). http://dx.doi.org/10.1016/S0891-5849(97)00024-510.1016/S0891-5849(97)00024-5Search in Google Scholar
[52] Wills, E. D., Biochem. J. 99, 667 (1966). Search in Google Scholar
[53] Tang, L., Zhang, Y., Qian, Z., and Shen, X., Biochem. J. 352, 27 (2000). http://dx.doi.org/10.1042/0264-6021:352002710.1042/0264-6021:3520027Search in Google Scholar
© 2006 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Influence of medium on the kinetics of oxidation of iron(II) ion with t-butyl hydroperoxide
- Synthesis of new thiazolo[2,3-b]pyrimidine derivatives of pharmaceutical interest
- Enthalpic analysis of the CaTiSiO5 system
- Kinetic, spectrophotometric determination of nanogram levels of manganese(II) using catalytic azo dye—potassium periodate—1,10-phenanthroline system
- Application of a ternary complex of tungsten(VI) with 4-nitrocatechol and thiazolyl blue for extraction-spectrophotometric determination of tungsten
- Determination of risperidone at picogram level in human urine by luminol—H2O2 chemiluminescence
- Electrochemical dissolution of chalcopyrite studied by voltammetry of immobilized microparticles
- Colon tissue concentrations of copper, iron, selenium, and zinc in colorectal carcinoma patients
- Structure of tetrakis(pyridinioacetate) neodymium(III) tetrahydrate perchlorate
- Thermally stable oligomer—Metal complexes based on oligo-ortho-aminophenol and oligophenylazomethinephenol
- Adsorption of SO2 on alumina
- One-pot, three-component synthesis of secondary amines and trisubstituted hydrazines from ketones
- Synthesis of α,α′-bis(R-benzylidene)cycloalkanones catalyzed by potassium hydrogen sulfate under solvent-free conditions
- Electrical conductivity of the molten KF—K2TaF7 system
- New substituted mono-and bis(imidazolyl)pyridines and their application in nitroaldolisation reaction
Articles in the same Issue
- Influence of medium on the kinetics of oxidation of iron(II) ion with t-butyl hydroperoxide
- Synthesis of new thiazolo[2,3-b]pyrimidine derivatives of pharmaceutical interest
- Enthalpic analysis of the CaTiSiO5 system
- Kinetic, spectrophotometric determination of nanogram levels of manganese(II) using catalytic azo dye—potassium periodate—1,10-phenanthroline system
- Application of a ternary complex of tungsten(VI) with 4-nitrocatechol and thiazolyl blue for extraction-spectrophotometric determination of tungsten
- Determination of risperidone at picogram level in human urine by luminol—H2O2 chemiluminescence
- Electrochemical dissolution of chalcopyrite studied by voltammetry of immobilized microparticles
- Colon tissue concentrations of copper, iron, selenium, and zinc in colorectal carcinoma patients
- Structure of tetrakis(pyridinioacetate) neodymium(III) tetrahydrate perchlorate
- Thermally stable oligomer—Metal complexes based on oligo-ortho-aminophenol and oligophenylazomethinephenol
- Adsorption of SO2 on alumina
- One-pot, three-component synthesis of secondary amines and trisubstituted hydrazines from ketones
- Synthesis of α,α′-bis(R-benzylidene)cycloalkanones catalyzed by potassium hydrogen sulfate under solvent-free conditions
- Electrical conductivity of the molten KF—K2TaF7 system
- New substituted mono-and bis(imidazolyl)pyridines and their application in nitroaldolisation reaction