Startseite Beshtauite, (NH4)2(UO2)(SO4)2·2H2O, a new mineral from Mount Beshtau, Northern Caucasus, Russia
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Beshtauite, (NH4)2(UO2)(SO4)2·2H2O, a new mineral from Mount Beshtau, Northern Caucasus, Russia

  • Igor V. Pekov EMAIL logo , Sergey V. Krivovichev , Vasiliy O. Yapaskurt , Nikita V. Chukanov und Dmitriy I. Belakovskiy
Veröffentlicht/Copyright: 12. August 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A new mineral beshtauite, (NH4)2(UO2)(SO4)2·2H2O, was found in the oxidation zone of the Beshtau uranium deposit, Mount Beshtau, Stavropol region, Northern Caucasus, Russia, and named after the locality. It is associated with rozenite, gypsum, lermontovite, and older marcasite, pyrite, halloysite, and opal. Beshtauite occurs as well-shaped short-prismatic crystals up to 0.1 × 0.15 × 0.2 mm, their clusters and crusts up to 0.5 mm across growing on marcasite. Beshtauite is transparent, light green. The luster is vitreous. The mineral fluoresces strongly yellow-green under both short- and long-wave UV irradiation. It is brittle. The Mohs hardness is ca. 2. Cleavage was not observed. Dcalc is 3.046 g/cm3. Beshtauite is optically biaxial (+), α = 1.566(3), β = 1.566(3), γ = 1.592(3), 2Vmeas < 10°. The chemical composition (wt%, electron microprobe data, H2O by difference) is: (NH4)2O 10.33, UO3 53.21, SO3 29.40, H2Ocalc 7.06, total 100.00. Content of (NH4)2O was calculated from measured nitrogen content: 5.56 wt% N. The empirical formula, calculated on the basis of 12 O apfu, is (NH4)2.12U0.99S1.96O9.91(H2O)2.09. Beshtauite is monoclinic, P21/c, a = 7.7360(8), b = 7.3712(5), c = 20.856(2) Å, β = 102.123(8)°, V = 1162.76(19) Å3, Z = 4 (from single-crystal X-ray diffraction data). The strongest reflections of the X-ray powder pattern [d (Å), I(hkl)] are: 6.86, 100(011, 102̅); 5.997, 19(012); 5.558, 15(102); 5.307, 36(111̅,110); 5.005, 35(013,112̅); 3.410, 38(114,204̅,106̅); 3.081, 24(016); 2.881, 20(106,123). The crystal structure was solved by direct methods and refined on the basis of 2677 independent reflections with I > 4σ(I) to R1 = 0.093. The structure is based upon [UO2(SO4)2(H2O)]2- layers consisting of corner-sharing UO6(H2O) pentagonal bipyramids and SO4 tetrahedra. The layers are coplanar to (1̅02) and are linked via hydrogen bonding that involve interlayer NH4+ ions and H2O molecules. Beshtauite is important indicator mineral: its presence can be considered as an evidence of transportation of U6+ in nature in forms of mobile complexes of uranyl cation with ammonia or polyamines.

Published Online: 2014-8-12
Published in Print: 2014-8-1

© 2014 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Chemistry and Mineralogy of Earth’s Mantle. Evidence for multiple diamondite-forming events in the mantle
  2. Chemistry and Mineralogy of Earth’s Mantle. Evidence for multiple diamondite-forming events in the mantle
  3. Chemistry and Mineralogy of Earth’s Mantle. Experimental determination of melting in the systems enstatite-magnesite and magnesite-calcite from 15 to 80 GPa
  4. Chemistry and Mineralogy of Earth’s Mantle. The spin state of iron in Fe3+-bearing Mg-perovskite and its crystal chemistry at high pressure
  5. Chemistry and Mineralogy of Earth’s Mantle. Hexagonal Na0.41[Na0.125Mg0.79Al0.085]2[Al0.79Si0.21]6O12 (NAL phase): Crystal structure refinement and elasticity
  6. What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Multivariate Analysis of Raman Spectra for the Identification of Sulfates: Implications for ExoMars
  7. What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Spectral and thermal properties of perchlorate salts and implications for Mars
  8. What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Reflectance spectroscopy and optical functions for hydrated Fe-sulfates
  9. Fluids in the Crust. Redox effects on calcite-portlandite-fluid equilibria at for earc conditions: Carbon mobility, methanogenesis, and reduction melting of calcite
  10. Fluids in the Crust. Constraints on the mobilization of Zr in magmatic-hydrothermal processes in subduction zones from in situ fluid-melt partitioning experiments
  11. The Second Conference on the Lunar Highlands Crust and New Directions. The petrogenesis of impact basin melt rocks in lunar meteorite Shişr 161
  12. Amorphous Materials: Properties, structure, and durability. The nearly complete dissociation of water in glasses with strong aluminum avoidance
  13. Sepiolite-palygorskite polysomatic series: Oriented aggregation as a crystal growth mechanism in natural environments
  14. Bentonite evolution at elevated pressures and temperatures: An experimental study for generic nuclear repository designs
  15. Rates of Li diffusion in garnet: Coupled transport of Li and Y+REEs
  16. Characteristics of djerfisherite from fluid-rich, metasomatized alkaline intrusive environments and anhydrous enstatite chondrites and achondrites
  17. Ferroan geikielite and coupled spinel-rutile exsolution from titanohematite: Interface characterization and magnetic properties
  18. Constraints on the incorporation mechanism of chlorine in peralkaline and peraluminous Na2O-CaO-Al2O3-SiO2 glasses
  19. Interlayer structure model of tri-hydrated low-charge smectite by X-ray diffraction and Monte Carlo modeling in the Grand Canonical ensemble
  20. Tetrahedrally coordinated Co2+ in oxides and silicates: Effect of local environment on optical properties
  21. A variable-temperature neutron diffraction study of serandite: A Mn-silicate framework with a very strong, two-proton site, hydrogen bond
  22. A new biogenic, struvite-related phosphate, the ammonium-analog of hazenite, (NH4)NaMg2(PO4)2·14H2O
  23. Chromo-alumino-povondraite, NaCr3(Al4Mg2)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup
  24. The occurrence of platinum-group element and gold minerals in the Bon Accord Ni-oxide body, South Africa
  25. Beshtauite, (NH4)2(UO2)(SO4)2·2H2O, a new mineral from Mount Beshtau, Northern Caucasus, Russia
  26. High-pressure phase transitions in FeCr2O4 and structure analysis of new post-spinel FeCr2O4 and Fe2Cr2O5 phases with meteoritical and petrological implications
  27. Letter. Kumdykolite from the ultrahigh-pressure granulite of the Bohemian Massif
  28. Letter. Crystal chemistry of dense hydrous magnesium silicates: The structure of phase H, MgSiH2O4, synthesized at 45 GPa and 1000 °C
  29. New Mineral Names
  30. Book Review
Heruntergeladen am 14.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am.2014.4870/html
Button zum nach oben scrollen