Startseite The Second Conference on the Lunar Highlands Crust and New Directions. The petrogenesis of impact basin melt rocks in lunar meteorite Shişr 161
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The Second Conference on the Lunar Highlands Crust and New Directions. The petrogenesis of impact basin melt rocks in lunar meteorite Shişr 161

  • Axel Wittmann EMAIL logo , Randy L. Korotev , Bradley L. Jolliff , Thomas J. Lapen und Anthony J. Irving
Veröffentlicht/Copyright: 12. August 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study explores the petrogenesis of Shişr 161, an immature lunar regolith breccia meteorite with low abundances of incompatible elements, a feldspathic affinity, and a significant magnesian component. Our approach was to identify all clasts >0.5 mm in size in a thin section, characterize their mineral and melt components, and reconstruct their bulk major and minor element compositions. Trace element concentrations in representative clasts of different textural and compositional types indicate that the clast inventory of Shişr 161 is dominated by impact melts that include slowly cooled cumulate melt rocks with mafic magnesian mineral assemblages. Minor exotic components are incompatible-element-rich melt spherules and glass fragments, and a gas-associated spheroidal precipitate. Our hypothesis for the petrologic setting of Shişr 161 is that the crystallized melt clasts originate from the upper ~1 km of the melt sheet of a 300 to 500 km diameter lunar impact basin in the Moon’s feldspathic highlands. This hypothesis is based on size requirements for cumulate impact melts and the incorporation of magnesian components that we interpret to be mantle-derived. The glassy melts likely formed during the excavation of the melt sheet assemblage, by an impact that produced a >15 km diameter crater. The assembly of Shişr 161 occurred in a proximal ejecta deposit of this excavation event. A later impact into this ejecta deposit then launched Shişr 161 from the Moon. Our geochemical modeling of remote sensing data combined with the petrographic and chemical characterization of Shişr 161 reveals a preferred provenance on the Moon’s surface that is close to pre-Nectarian Riemann-Fabry basin.

Published Online: 2014-8-12
Published in Print: 2014-8-1

© 2014 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Chemistry and Mineralogy of Earth’s Mantle. Evidence for multiple diamondite-forming events in the mantle
  2. Chemistry and Mineralogy of Earth’s Mantle. Evidence for multiple diamondite-forming events in the mantle
  3. Chemistry and Mineralogy of Earth’s Mantle. Experimental determination of melting in the systems enstatite-magnesite and magnesite-calcite from 15 to 80 GPa
  4. Chemistry and Mineralogy of Earth’s Mantle. The spin state of iron in Fe3+-bearing Mg-perovskite and its crystal chemistry at high pressure
  5. Chemistry and Mineralogy of Earth’s Mantle. Hexagonal Na0.41[Na0.125Mg0.79Al0.085]2[Al0.79Si0.21]6O12 (NAL phase): Crystal structure refinement and elasticity
  6. What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Multivariate Analysis of Raman Spectra for the Identification of Sulfates: Implications for ExoMars
  7. What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Spectral and thermal properties of perchlorate salts and implications for Mars
  8. What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Reflectance spectroscopy and optical functions for hydrated Fe-sulfates
  9. Fluids in the Crust. Redox effects on calcite-portlandite-fluid equilibria at for earc conditions: Carbon mobility, methanogenesis, and reduction melting of calcite
  10. Fluids in the Crust. Constraints on the mobilization of Zr in magmatic-hydrothermal processes in subduction zones from in situ fluid-melt partitioning experiments
  11. The Second Conference on the Lunar Highlands Crust and New Directions. The petrogenesis of impact basin melt rocks in lunar meteorite Shişr 161
  12. Amorphous Materials: Properties, structure, and durability. The nearly complete dissociation of water in glasses with strong aluminum avoidance
  13. Sepiolite-palygorskite polysomatic series: Oriented aggregation as a crystal growth mechanism in natural environments
  14. Bentonite evolution at elevated pressures and temperatures: An experimental study for generic nuclear repository designs
  15. Rates of Li diffusion in garnet: Coupled transport of Li and Y+REEs
  16. Characteristics of djerfisherite from fluid-rich, metasomatized alkaline intrusive environments and anhydrous enstatite chondrites and achondrites
  17. Ferroan geikielite and coupled spinel-rutile exsolution from titanohematite: Interface characterization and magnetic properties
  18. Constraints on the incorporation mechanism of chlorine in peralkaline and peraluminous Na2O-CaO-Al2O3-SiO2 glasses
  19. Interlayer structure model of tri-hydrated low-charge smectite by X-ray diffraction and Monte Carlo modeling in the Grand Canonical ensemble
  20. Tetrahedrally coordinated Co2+ in oxides and silicates: Effect of local environment on optical properties
  21. A variable-temperature neutron diffraction study of serandite: A Mn-silicate framework with a very strong, two-proton site, hydrogen bond
  22. A new biogenic, struvite-related phosphate, the ammonium-analog of hazenite, (NH4)NaMg2(PO4)2·14H2O
  23. Chromo-alumino-povondraite, NaCr3(Al4Mg2)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup
  24. The occurrence of platinum-group element and gold minerals in the Bon Accord Ni-oxide body, South Africa
  25. Beshtauite, (NH4)2(UO2)(SO4)2·2H2O, a new mineral from Mount Beshtau, Northern Caucasus, Russia
  26. High-pressure phase transitions in FeCr2O4 and structure analysis of new post-spinel FeCr2O4 and Fe2Cr2O5 phases with meteoritical and petrological implications
  27. Letter. Kumdykolite from the ultrahigh-pressure granulite of the Bohemian Massif
  28. Letter. Crystal chemistry of dense hydrous magnesium silicates: The structure of phase H, MgSiH2O4, synthesized at 45 GPa and 1000 °C
  29. New Mineral Names
  30. Book Review
Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am.2014.4837/html
Button zum nach oben scrollen