Home Tetrahedrally coordinated Co2+ in oxides and silicates: Effect of local environment on optical properties
Article
Licensed
Unlicensed Requires Authentication

Tetrahedrally coordinated Co2+ in oxides and silicates: Effect of local environment on optical properties

  • Michele Dondi , Matteo Ardit EMAIL logo , Giuseppe Cruciani and Chiara Zanelli
Published/Copyright: August 12, 2014
Become an author with De Gruyter Brill

Abstract

The Co2+ ion in fourfold coordination provides d-d electronic transitions with the strongest optical density among oxides and silicates. For this reason, it is widely used in pigments and dyes to get blue shades detectable down to a very low cobalt concentration. Such a low-detection limit turns the Co2+ ion into a suitable probe to disclose the local ligand environment in a wide range of materials by means of optical spectroscopy. Even if extensively studied in organometallic complexes, an in-depth investigation of optical properties of Co2+ in tetrahedral coordination into oxidic structures is limited to some case-study in minerals and synthetic analogs (spinel, zincite, gahnite, willemite, calcium cobalt selenite). The present study represents an attempt to outline crystal structural (long-range metal-oxygen distances, O-T-O bond angles, and distortion parameters by XRD) and optical parameters (10Dq, Racah B and C, band splitting by EAS) in 13 samples of oxides and silicates providing a wide set of different local fourfold coordination around Co2+ added as a dopant. Subtle variations of crystal field strength and interelectronic repulsion can be appreciated in gahnite, Ca-Sr-hardystonite, Ca-Sr-Baåkermanite, willemite, Ba2MgSi2O7 melilite-related (where Co2+ substitutes Mg2+ or Zn2+ by 0.25-0.3 apfu) as well as in gehlenite and fresnoite (where Co2+ substitutes Al3+ and Ti4+, respectively, by 0.2 apfu due to charge mismatch). Results are compared with literature data about hibonite, spinel s.s., staurolite, yttrium garnets, and zincite. Spectral interpretation is not straightforward owing to the occurrence of different Co2+ bands: spin-allowed and spin-forbidden electronic transitions, two- or threefold split due to both lowering of point symmetry at the tetrahedron and spin-orbit coupling plus presumably vibronic transitions. Optical spectra vary significantly even for apparently small changes in the long-range CoO4 arrangement as measured by XRD. The expected relationship between 10Dq and the mean Co-O distance is fulfilled, but the accommodation into small AlO4 sites in gehlenite (YAG and hibonite) implies a significant structural relaxation around the Co2+ ion. The threefold splitting of the spin-allowed 4T1(F) and 4T1(P) bands can be related to the angular distortion of the CoO4 tetrahedra. Overall, changes of spectral features of tetrahedrally coordinated Co2+ can be attributed to different local arrangement of ligands with an effect correlated to the second nearest neighbors by the bond valence theory. This was disclosed contrasting 10Dq with the ratio of the observed and ideal bond valence sum for the polyhedra sharing oxygen with the Co-centered tetrahedron.

Published Online: 2014-8-12
Published in Print: 2014-8-1

© 2014 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Chemistry and Mineralogy of Earth’s Mantle. Evidence for multiple diamondite-forming events in the mantle
  2. Chemistry and Mineralogy of Earth’s Mantle. Evidence for multiple diamondite-forming events in the mantle
  3. Chemistry and Mineralogy of Earth’s Mantle. Experimental determination of melting in the systems enstatite-magnesite and magnesite-calcite from 15 to 80 GPa
  4. Chemistry and Mineralogy of Earth’s Mantle. The spin state of iron in Fe3+-bearing Mg-perovskite and its crystal chemistry at high pressure
  5. Chemistry and Mineralogy of Earth’s Mantle. Hexagonal Na0.41[Na0.125Mg0.79Al0.085]2[Al0.79Si0.21]6O12 (NAL phase): Crystal structure refinement and elasticity
  6. What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Multivariate Analysis of Raman Spectra for the Identification of Sulfates: Implications for ExoMars
  7. What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Spectral and thermal properties of perchlorate salts and implications for Mars
  8. What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Reflectance spectroscopy and optical functions for hydrated Fe-sulfates
  9. Fluids in the Crust. Redox effects on calcite-portlandite-fluid equilibria at for earc conditions: Carbon mobility, methanogenesis, and reduction melting of calcite
  10. Fluids in the Crust. Constraints on the mobilization of Zr in magmatic-hydrothermal processes in subduction zones from in situ fluid-melt partitioning experiments
  11. The Second Conference on the Lunar Highlands Crust and New Directions. The petrogenesis of impact basin melt rocks in lunar meteorite Shişr 161
  12. Amorphous Materials: Properties, structure, and durability. The nearly complete dissociation of water in glasses with strong aluminum avoidance
  13. Sepiolite-palygorskite polysomatic series: Oriented aggregation as a crystal growth mechanism in natural environments
  14. Bentonite evolution at elevated pressures and temperatures: An experimental study for generic nuclear repository designs
  15. Rates of Li diffusion in garnet: Coupled transport of Li and Y+REEs
  16. Characteristics of djerfisherite from fluid-rich, metasomatized alkaline intrusive environments and anhydrous enstatite chondrites and achondrites
  17. Ferroan geikielite and coupled spinel-rutile exsolution from titanohematite: Interface characterization and magnetic properties
  18. Constraints on the incorporation mechanism of chlorine in peralkaline and peraluminous Na2O-CaO-Al2O3-SiO2 glasses
  19. Interlayer structure model of tri-hydrated low-charge smectite by X-ray diffraction and Monte Carlo modeling in the Grand Canonical ensemble
  20. Tetrahedrally coordinated Co2+ in oxides and silicates: Effect of local environment on optical properties
  21. A variable-temperature neutron diffraction study of serandite: A Mn-silicate framework with a very strong, two-proton site, hydrogen bond
  22. A new biogenic, struvite-related phosphate, the ammonium-analog of hazenite, (NH4)NaMg2(PO4)2·14H2O
  23. Chromo-alumino-povondraite, NaCr3(Al4Mg2)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup
  24. The occurrence of platinum-group element and gold minerals in the Bon Accord Ni-oxide body, South Africa
  25. Beshtauite, (NH4)2(UO2)(SO4)2·2H2O, a new mineral from Mount Beshtau, Northern Caucasus, Russia
  26. High-pressure phase transitions in FeCr2O4 and structure analysis of new post-spinel FeCr2O4 and Fe2Cr2O5 phases with meteoritical and petrological implications
  27. Letter. Kumdykolite from the ultrahigh-pressure granulite of the Bohemian Massif
  28. Letter. Crystal chemistry of dense hydrous magnesium silicates: The structure of phase H, MgSiH2O4, synthesized at 45 GPa and 1000 °C
  29. New Mineral Names
  30. Book Review
Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2014.4877/html
Scroll to top button