Home Ferroan geikielite and coupled spinel-rutile exsolution from titanohematite: Interface characterization and magnetic properties
Article
Licensed
Unlicensed Requires Authentication

Ferroan geikielite and coupled spinel-rutile exsolution from titanohematite: Interface characterization and magnetic properties

  • Peter Robinson EMAIL logo , Falko Langenhorst , S.A. McEnroe , Karl Fabian and Tiziana Boffa Ballaran
Published/Copyright: August 12, 2014
Become an author with De Gruyter Brill

Abstract

Extensive negative aeromagnetic anomalies in the Modum area, south Norway, derive from rocks containing ilmenite with hematite exsolution, or hematite with ilmenite exsolution, carrying strong/stable reversed remanence. Here we describe a 2.5 cm thick high-temperature metamorphic vein of exsolved titanohematite. Reflected-light and EMP analyses show it contains three types of exsolution: spinel plates on (001); rutile blade satellites on spinel oriented at angles of ~60-90° to titanohematite (001); and lamellae 0.1-0.3 mm thick too fine for EMP analyses, also parallel to (001). Powder XRD gave a = 5.0393 Å, c = 13.7687 Å, V = 302.81 Å3 for titanohematite (≈Ilm9), and unrefined reflections of rutile and geikielite. Overlap EMP analyses showed enrichment in MgO, TiO2, and lack of Al2O3, indicating a mixture of titanohematite and geikielite. Non-overlap analyses showed the titanohematite is 6%Fe2+TiO3, 2%MgTiO3, 92% Fe2O3, generally confirmed by TEM-EDX analyses that also showed the geikielite is 30%Fe2+TiO3, 70%MgTiO3.

Orientation and interface relationships between exsolutions and host titanohematite were characterized with TEM, using conventional and high-resolution imaging complemented by selected-area electron diffraction. Spinel shares (111) with (001) of titanohematite and geikielite (001) the same. The epitactic relationship between rutile and titanohematite, previously not well constrained, was estimated from reflected-light and TEM images and lattice-fit studies. The a1 axis of rutile is parallel to a1 of hematite and c of rutile is normal to a2 of hematite, all in the hematite basal plane, which, however is not a phase interface. The rutile appears to occur in blades within prism planes in titanohematite located ~69° from a axes of hematite, with long axes of the blades oriented in a minimum strain direction within the planes at ~63° from the (001) basal plane.

Spinel and rutile, analyzed by EMP, exsolved first. Spinel gave 96%MgAl2O4, 3%FeFe2O4, Mg/total R2+ = 0.98. Magnesian/aluminous spinel lacking Ti exsolved from titanohematite in coupled exsolution with ferrian rutile, where combined components were dissolved as corundum/geikielite components in high-T aluminous magnesian titanohematite. Early exsolution lowered geikielite, and eliminated the corundum component. Later fine exsolution of ferroan geikielite moved the titanohematite closer to Fe2O3.

Mg2+ has no magnetic moment, but breaks up linkages between Fe atoms, lowers Néel Ts, and produces unusual low-T properties. This titanohematite has Néel T, 873 K (600 °C). Geikielite at 70%MgTiO3, is far beyond its theoretical nearest-neighbor percolation threshold at 30.3%MgTiO3. However, the sample shows a negative magnetic exchange bias below 25 K and low-T remanence lost above ~40 K. Such properties are reported in samples containing thin ilmenite lamellae in titanohematite, in theory with odd numbers of Fe layers, where exchange bias is linked to lamellar magnetism at the phase interfaces, when the ilmenite becomes a high-anisotropy magnet in a magnetically softer host. Potential explanations for the behavior of ferroan geikileite are discussed.

Published Online: 2014-8-12
Published in Print: 2014-8-1

© 2014 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Chemistry and Mineralogy of Earth’s Mantle. Evidence for multiple diamondite-forming events in the mantle
  2. Chemistry and Mineralogy of Earth’s Mantle. Evidence for multiple diamondite-forming events in the mantle
  3. Chemistry and Mineralogy of Earth’s Mantle. Experimental determination of melting in the systems enstatite-magnesite and magnesite-calcite from 15 to 80 GPa
  4. Chemistry and Mineralogy of Earth’s Mantle. The spin state of iron in Fe3+-bearing Mg-perovskite and its crystal chemistry at high pressure
  5. Chemistry and Mineralogy of Earth’s Mantle. Hexagonal Na0.41[Na0.125Mg0.79Al0.085]2[Al0.79Si0.21]6O12 (NAL phase): Crystal structure refinement and elasticity
  6. What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Multivariate Analysis of Raman Spectra for the Identification of Sulfates: Implications for ExoMars
  7. What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Spectral and thermal properties of perchlorate salts and implications for Mars
  8. What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Reflectance spectroscopy and optical functions for hydrated Fe-sulfates
  9. Fluids in the Crust. Redox effects on calcite-portlandite-fluid equilibria at for earc conditions: Carbon mobility, methanogenesis, and reduction melting of calcite
  10. Fluids in the Crust. Constraints on the mobilization of Zr in magmatic-hydrothermal processes in subduction zones from in situ fluid-melt partitioning experiments
  11. The Second Conference on the Lunar Highlands Crust and New Directions. The petrogenesis of impact basin melt rocks in lunar meteorite Shişr 161
  12. Amorphous Materials: Properties, structure, and durability. The nearly complete dissociation of water in glasses with strong aluminum avoidance
  13. Sepiolite-palygorskite polysomatic series: Oriented aggregation as a crystal growth mechanism in natural environments
  14. Bentonite evolution at elevated pressures and temperatures: An experimental study for generic nuclear repository designs
  15. Rates of Li diffusion in garnet: Coupled transport of Li and Y+REEs
  16. Characteristics of djerfisherite from fluid-rich, metasomatized alkaline intrusive environments and anhydrous enstatite chondrites and achondrites
  17. Ferroan geikielite and coupled spinel-rutile exsolution from titanohematite: Interface characterization and magnetic properties
  18. Constraints on the incorporation mechanism of chlorine in peralkaline and peraluminous Na2O-CaO-Al2O3-SiO2 glasses
  19. Interlayer structure model of tri-hydrated low-charge smectite by X-ray diffraction and Monte Carlo modeling in the Grand Canonical ensemble
  20. Tetrahedrally coordinated Co2+ in oxides and silicates: Effect of local environment on optical properties
  21. A variable-temperature neutron diffraction study of serandite: A Mn-silicate framework with a very strong, two-proton site, hydrogen bond
  22. A new biogenic, struvite-related phosphate, the ammonium-analog of hazenite, (NH4)NaMg2(PO4)2·14H2O
  23. Chromo-alumino-povondraite, NaCr3(Al4Mg2)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup
  24. The occurrence of platinum-group element and gold minerals in the Bon Accord Ni-oxide body, South Africa
  25. Beshtauite, (NH4)2(UO2)(SO4)2·2H2O, a new mineral from Mount Beshtau, Northern Caucasus, Russia
  26. High-pressure phase transitions in FeCr2O4 and structure analysis of new post-spinel FeCr2O4 and Fe2Cr2O5 phases with meteoritical and petrological implications
  27. Letter. Kumdykolite from the ultrahigh-pressure granulite of the Bohemian Massif
  28. Letter. Crystal chemistry of dense hydrous magnesium silicates: The structure of phase H, MgSiH2O4, synthesized at 45 GPa and 1000 °C
  29. New Mineral Names
  30. Book Review
Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2014.4711/html
Scroll to top button