Home Physical Sciences Mechanism and kinetics of reduction of a FeO-Fe2O3-CaO-MgO aluminosilicate melt in a high-CO-activity environment
Article
Licensed
Unlicensed Requires Authentication

Mechanism and kinetics of reduction of a FeO-Fe2O3-CaO-MgO aluminosilicate melt in a high-CO-activity environment

  • Reid F. Cooper EMAIL logo , Rebecca L.A. Everman , Justin W. Hustoft and Sang-Heon Dan Shim
Published/Copyright: April 2, 2015
Become an author with De Gruyter Brill

Abstract

Droplets of an iron-bearing calcia magnesia aluminosilicate (Fe-CMAS) melt were reacted under distinctly reducing conditions (fO₂ = 2.4 × 10-13 and 6.4 × 10-15 atm) at high temperature (~1400 °C) and ambient pressure. The low fO₂ environment was maintained by a flowing gas mixture of CO and CO2, with a high content of CO. Molten metallic iron alloyed with silicon and carbon formed on the surface of the melt; no metal was observed in sample interiors. A color change from brown to pale blue confined to the outer layer of the melt indicated that essentially complete reduction of Fe3+ to Fe2+ had occurred in this region. Analysis of the reaction kinetics, particularly in comparison to melts of similar polymerization but free of CaO, reveals that the concentration of electron holes has decreased to such an extent that ionic transport in the melt is significantly slowed and the diffusion of CO as a neutral species becomes dominant and rate-limiting: molecular CO, initially incorporated into the melt as a physically dissolved species, subsequently reacts to form chemically dissolved (bonded into the melt structure) CO32- anions, consuming electron holes in the process. The chemical diffusion coefficient for CO in the reduced melt at 1400 °C is estimated as DCO ≈ 4 × 10-4 cm2/s, consistent with that of other, similarly sized molecular species (e.g., H2 and H2O) for similarly polymerized melts, as reported by other investigators. Upon quenching, the droplet acts as a closed system. Internal redox couples see the reduction of the carbonate so as to form bubbles of CO, the composition of which are confirmed with Raman spectroscopy. The open-system reduction and closed-system quenching dynamics are analyzed following an Ellingham-diagram approach.

Received: 2009-8-18
Accepted: 2010-1-30
Published Online: 2015-4-2
Published in Print: 2010-5-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. TEM-assisted dynamic scanning force microscope imaging of (001) antigorite: Surfaces and steps on a modulated silicate
  2. PH₂O-dependent structural phase transitions in the zeolite mesolite: Real- and reciprocal-space crystal structure refinements
  3. The crystal structure of esperite, with a revised chemical formula, PbCa2(ZnSiO4)3, isostructural with beryllonite
  4. Dendritic zircon formation by deterministic volume-filling fractal growth: Implications for the mechanisms of branch formation in dendrites
  5. Enthalpies of formation of pyrrhotite Fe1–0.125xS (0 ≤ x ≤ 1) solid solutions
  6. Crystal chemistry of synthetic lawsonite solid-solution series CaAl2[(OH)2/Si2O7]·H2O– SrAl2[(OH)2/Si2O7]·H2O and the Cmcm–P21/m phase transition
  7. Coulsellite, CaNa3AlMg3F14, a rhombohedral pyrochlore with 1:3 ordering in both A and B sites, from the Cleveland Mine, Tasmania, Australia
  8. Synthesis and characterization of zeolite 4A-type desiccant from kaolin
  9. Effect of iron on the compressibility of hydrous ringwoodite
  10. Kapundaite, (Na,Ca)2Fe4 3+(PO4)4(OH)3·5H2O, a new phosphate species from Toms quarry, South Australia: Description and structural relationship to mélonjosephite
  11. Rate of antigorite dehydration at 2 GPa applied to subduction zones
  12. IR absorption coefficients for water in nominally anhydrous high-pressure minerals
  13. Experimental techniques for determining tin solubility in silicate melts using silica capsules in 1 atm furnaces and rhenium capsules in the piston cylinder
  14. Cassiterite-saturated minimum melting behavior within Sn-SnO2-SiO2 at 1 atm and 10 kbar
  15. Cr-bearing tourmaline associated with emerald deposits from Swat, NW Pakistan: Genesis and its exploration significance
  16. Mechanism and kinetics of reduction of a FeO-Fe2O3-CaO-MgO aluminosilicate melt in a high-CO-activity environment
  17. Biodurability of chrysotile and tremolite asbestos in simulated lung and gastric fluids
  18. High-pressure behavior of Ca/Na clinopyroxenes: The effect of divalent and trivalent 3d-transition elements
  19. Uvarovite from chromite-bearing ultramafic intrusives, Orissa, India, a crystal-chemical characterization using 57Fe Mössbauer spectroscopy
  20. An X-ray Rietveld and infrared spectral study of the Na2(Mn1–xM2+x )Fe2+Fe3+(PO4)3 (x = 0 to 1 and M2+ = Mg, Cd) alluaudite-type solid solutions
  21. Dissolution kinetics of anorthite in a supercritical CO2–water system
  22. Evaluation of the elasticity normal to the basal plane of non-expandable 2:1 phyllosilicate minerals by nanoindentation
  23. 57Fe Mössbauer spectroscopy and electrical resistivity studies on naturally occurring native iron under high pressures up to 9.1 GPa
  24. Letter. Discreditation of paraspurrite
  25. Letter. High-pressure magnetic transition in hcp-Fe
  26. Letter. Reduced As components in highly oxidized environments: Evidence from full spectral XANES imaging using the Maia massively parallel detector
  27. Letter. FTIR spectroscopy with a focal plane array detector: A novel tool to monitor the spatial OH-defect distribution in single crystals applied to synthetic enstatite
  28. Letter. Akaogiite: An ultra-dense polymorph of TiO2 with the baddeleyite-type structure, in shocked garnet gneiss from the Ries Crater, Germany
Downloaded on 14.2.2026 from https://www.degruyterbrill.com/document/doi/10.2138/am.2010.3375/html
Scroll to top button