Home Physical Sciences Water in the interlayer region of birnessite: Importance in cation exchange and structural stability
Article
Licensed
Unlicensed Requires Authentication

Water in the interlayer region of birnessite: Importance in cation exchange and structural stability

  • Elizabeth A. Johnson EMAIL logo and Jeffrey E. Post
Published/Copyright: March 31, 2015
Become an author with De Gruyter Brill

Abstract

Birnessite is an important scavenger of trace metals in soils and aqueous environments. The basic birnessite-type structure consists of sheets of Mn octahedra separated by ~7 or ~10 Å (“buserite”) interlayer regions filled with cations and water. Synthetic birnessite-like structures were produced through cation exchange reactions with synthetic Na-birnessite. The unheated, synthetic Mg2+, Ca2+, and Ni2+ layer structures have an ~10 Å interlayer spacing, whereas the other cation-exchanged synthetic birnessites and the related mineral chalcophanite have an interlayer spacing of ~7 Å. The Li+, Na+, K+, Cs+, and Pb2+ synthetic birnessites each contain two to three structurally different water sites, as evidenced by multiple H2O bending and stretching modes in the infrared spectra. The complexity of the water bands in these spectra is likely related to disordering of cations on the interlayer sites. H-birnessite contains structural water and either hydroxyl, hydronium (H3O+), or both. The small difference in the width of the water stretching modes between room temperature and -180 °C indicates that the water molecules in birnessite-like structures are predominantly structurally, rather than dynamically, disordered. Most of the synthetic birnessites, including Na- and K-birnessite, undergo significant water loss at temperatures below 100 °C. There is a linear relationship between the temperature at which most of the water is lost from a given cation-exchanged birnessite and the heat of hydration of the interlayer cation. This finding implies that the interlayer water is strongly bound to the interlayer cations, and plays an important role in the thermal stability of birnessite-like structures.

Received: 2005-2-11
Accepted: 2005-9-22
Published Online: 2015-3-31
Published in Print: 2006-4-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Structural model for the biogenic Mn oxide produced by Pseudomonas putida
  2. Electron-beam (5–10 keV) damage in triplite-group phosphates: Consequences for electron-microprobe analysis of fluorine
  3. Vacancy defects in MgO at high pressure
  4. Plastic flow of pyrope at mantle pressure and temperature
  5. Parvo-mangano-edenite, parvo-manganotremolite, and the solid solution between Ca and Mn2+ at the M4 site in amphiboles
  6. Reinvestigation of the MgSiO3 perovskite structure at high pressure
  7. The mechanism and kinetics of α-NiS oxidation in the temperature range 670–700°C
  8. Influence of charge location on 29Si NMR chemical shift of 2:1 phyllosilicates
  9. The size distribution of exsolution lamellae in iron-free clinopyroxene
  10. The high-pressure phase transformation and breakdown of MgFe2O4
  11. Elastic behavior, phase transition, and pressure induced structural evolution of analcime
  12. A new chemical etching technique for peridotites using molten anhydrous borax
  13. Poppiite, the V3+ end-member of the pumpellyite group: Description and crystal structure
  14. Cation redistribution in the octahedral sheet during diagenesis of illite-smectites from Jurassic and Cambrian oil source rock shales
  15. A shock-induced polymorph of anatase and rutile from the Chesapeake Bay impact structure, Virginia, U.S.A.
  16. Water in the interlayer region of birnessite: Importance in cation exchange and structural stability
  17. In situ HAFM study of the thermal dehydration on gypsum (010) surfaces
  18. Influence of dehydration kinetics on T-O-T bridge breaking in zeolites with framework type STI: The case of stellerite
  19. Estimation of volume fractions of liquid and vapor phases in fluid inclusions, and definition of inclusion shapes
  20. Thermodynamics of uranyl minerals: Enthalpies of formation of uranyl oxide hydrates
  21. SIMS investigation of electron-beam damage to hydrous, rhyolitic glasses: Implications for melt inclusion analysis
  22. Synthetic Ag-rich tourmaline: Structure and chemistry
  23. Genesis and compositional heterogeneity of smectites. Part III: Alteration of basic pyroclastic rocks—A case study from the Troodos Ophiolite Complex, Cyprus
  24. Ganterite, the barium mica Ba0.5K0.5Al2(Al1.5Si2.5)O10(OH)2, from Oreana, Nevada
  25. Letter. Transformation of pentlandite to violarite under mild hydrothermal conditions
Downloaded on 19.1.2026 from https://www.degruyterbrill.com/document/doi/10.2138/am.2006.2090/html
Scroll to top button