Home Physical Sciences The size distribution of exsolution lamellae in iron-free clinopyroxene
Article
Licensed
Unlicensed Requires Authentication

The size distribution of exsolution lamellae in iron-free clinopyroxene

  • Stephan Weinbruch , Volker Styrsa and Thomas Dirsch EMAIL logo
Published/Copyright: March 31, 2015
Become an author with De Gruyter Brill

Abstract

The size distribution of pigeonite and diopside exsolution lamellae on “001,” obtained at temperatures of 1100, 1200, and 1300 °C and annealing times between 2 and 4320 h, was studied by transmission electron microscopy. A total of 5192 pigeonite and 5286 diopside lamellae was studied. At all three temperatures, the size distributions of pigeonite and diopside lamellae are smaller during exsolution compared to the subsequent coarsening process. The final size distributions are time invariant, indicating that a steady-stage distribution is reached. The theory of Ardell (1972a), which assumes volume diffusion as rate-limiting process and takes into account the non-zero volume fraction of the precipitates, describes the experimental size distributions quite well and also leads to the observed exponent of three in the rate law

Received: 2005-3-16
Accepted: 2005-10-11
Published Online: 2015-3-31
Published in Print: 2006-4-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Structural model for the biogenic Mn oxide produced by Pseudomonas putida
  2. Electron-beam (5–10 keV) damage in triplite-group phosphates: Consequences for electron-microprobe analysis of fluorine
  3. Vacancy defects in MgO at high pressure
  4. Plastic flow of pyrope at mantle pressure and temperature
  5. Parvo-mangano-edenite, parvo-manganotremolite, and the solid solution between Ca and Mn2+ at the M4 site in amphiboles
  6. Reinvestigation of the MgSiO3 perovskite structure at high pressure
  7. The mechanism and kinetics of α-NiS oxidation in the temperature range 670–700°C
  8. Influence of charge location on 29Si NMR chemical shift of 2:1 phyllosilicates
  9. The size distribution of exsolution lamellae in iron-free clinopyroxene
  10. The high-pressure phase transformation and breakdown of MgFe2O4
  11. Elastic behavior, phase transition, and pressure induced structural evolution of analcime
  12. A new chemical etching technique for peridotites using molten anhydrous borax
  13. Poppiite, the V3+ end-member of the pumpellyite group: Description and crystal structure
  14. Cation redistribution in the octahedral sheet during diagenesis of illite-smectites from Jurassic and Cambrian oil source rock shales
  15. A shock-induced polymorph of anatase and rutile from the Chesapeake Bay impact structure, Virginia, U.S.A.
  16. Water in the interlayer region of birnessite: Importance in cation exchange and structural stability
  17. In situ HAFM study of the thermal dehydration on gypsum (010) surfaces
  18. Influence of dehydration kinetics on T-O-T bridge breaking in zeolites with framework type STI: The case of stellerite
  19. Estimation of volume fractions of liquid and vapor phases in fluid inclusions, and definition of inclusion shapes
  20. Thermodynamics of uranyl minerals: Enthalpies of formation of uranyl oxide hydrates
  21. SIMS investigation of electron-beam damage to hydrous, rhyolitic glasses: Implications for melt inclusion analysis
  22. Synthetic Ag-rich tourmaline: Structure and chemistry
  23. Genesis and compositional heterogeneity of smectites. Part III: Alteration of basic pyroclastic rocks—A case study from the Troodos Ophiolite Complex, Cyprus
  24. Ganterite, the barium mica Ba0.5K0.5Al2(Al1.5Si2.5)O10(OH)2, from Oreana, Nevada
  25. Letter. Transformation of pentlandite to violarite under mild hydrothermal conditions
Downloaded on 19.1.2026 from https://www.degruyterbrill.com/document/doi/10.2138/am.2006.1944/html
Scroll to top button