Abstract
First-principles calculations within the local density and pseudopotential approximations were performed to investigate the effects of pressure on the energetics and structural behavior of charged vacancy defects in MgO. The simulations were performed for a supercell containing 216 atoms with their positions being fully optimized. In particular, the formation and migration energies of cation and anion vacancies were shown to substantially increase over the pressure regime of the Earth.s mantle. Our results thus suggest that pressure should suppress intrinsic diffusion mediated by ionic vacancies in MgO over the mantle pressure regime. The calculated three-dimensional data sets for atomic displacements and electron charge density were explored in detail using an interactive visualization system. Although the atomic and electronic structures are highly distorted in the close vicinity of the defects (i.e., in the region covering up to the nearest and next-nearest atoms), the effects are not negligible at farther distances
© 2015 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Structural model for the biogenic Mn oxide produced by Pseudomonas putida
- Electron-beam (5–10 keV) damage in triplite-group phosphates: Consequences for electron-microprobe analysis of fluorine
- Vacancy defects in MgO at high pressure
- Plastic flow of pyrope at mantle pressure and temperature
- Parvo-mangano-edenite, parvo-manganotremolite, and the solid solution between Ca and Mn2+ at the M4 site in amphiboles
- Reinvestigation of the MgSiO3 perovskite structure at high pressure
- The mechanism and kinetics of α-NiS oxidation in the temperature range 670–700°C
- Influence of charge location on 29Si NMR chemical shift of 2:1 phyllosilicates
- The size distribution of exsolution lamellae in iron-free clinopyroxene
- The high-pressure phase transformation and breakdown of MgFe2O4
- Elastic behavior, phase transition, and pressure induced structural evolution of analcime
- A new chemical etching technique for peridotites using molten anhydrous borax
- Poppiite, the V3+ end-member of the pumpellyite group: Description and crystal structure
- Cation redistribution in the octahedral sheet during diagenesis of illite-smectites from Jurassic and Cambrian oil source rock shales
- A shock-induced polymorph of anatase and rutile from the Chesapeake Bay impact structure, Virginia, U.S.A.
- Water in the interlayer region of birnessite: Importance in cation exchange and structural stability
- In situ HAFM study of the thermal dehydration on gypsum (010) surfaces
- Influence of dehydration kinetics on T-O-T bridge breaking in zeolites with framework type STI: The case of stellerite
- Estimation of volume fractions of liquid and vapor phases in fluid inclusions, and definition of inclusion shapes
- Thermodynamics of uranyl minerals: Enthalpies of formation of uranyl oxide hydrates
- SIMS investigation of electron-beam damage to hydrous, rhyolitic glasses: Implications for melt inclusion analysis
- Synthetic Ag-rich tourmaline: Structure and chemistry
- Genesis and compositional heterogeneity of smectites. Part III: Alteration of basic pyroclastic rocksA case study from the Troodos Ophiolite Complex, Cyprus
- Ganterite, the barium mica Ba0.5K0.5Al2(Al1.5Si2.5)O10(OH)2, from Oreana, Nevada
- Letter. Transformation of pentlandite to violarite under mild hydrothermal conditions
Articles in the same Issue
- Structural model for the biogenic Mn oxide produced by Pseudomonas putida
- Electron-beam (5–10 keV) damage in triplite-group phosphates: Consequences for electron-microprobe analysis of fluorine
- Vacancy defects in MgO at high pressure
- Plastic flow of pyrope at mantle pressure and temperature
- Parvo-mangano-edenite, parvo-manganotremolite, and the solid solution between Ca and Mn2+ at the M4 site in amphiboles
- Reinvestigation of the MgSiO3 perovskite structure at high pressure
- The mechanism and kinetics of α-NiS oxidation in the temperature range 670–700°C
- Influence of charge location on 29Si NMR chemical shift of 2:1 phyllosilicates
- The size distribution of exsolution lamellae in iron-free clinopyroxene
- The high-pressure phase transformation and breakdown of MgFe2O4
- Elastic behavior, phase transition, and pressure induced structural evolution of analcime
- A new chemical etching technique for peridotites using molten anhydrous borax
- Poppiite, the V3+ end-member of the pumpellyite group: Description and crystal structure
- Cation redistribution in the octahedral sheet during diagenesis of illite-smectites from Jurassic and Cambrian oil source rock shales
- A shock-induced polymorph of anatase and rutile from the Chesapeake Bay impact structure, Virginia, U.S.A.
- Water in the interlayer region of birnessite: Importance in cation exchange and structural stability
- In situ HAFM study of the thermal dehydration on gypsum (010) surfaces
- Influence of dehydration kinetics on T-O-T bridge breaking in zeolites with framework type STI: The case of stellerite
- Estimation of volume fractions of liquid and vapor phases in fluid inclusions, and definition of inclusion shapes
- Thermodynamics of uranyl minerals: Enthalpies of formation of uranyl oxide hydrates
- SIMS investigation of electron-beam damage to hydrous, rhyolitic glasses: Implications for melt inclusion analysis
- Synthetic Ag-rich tourmaline: Structure and chemistry
- Genesis and compositional heterogeneity of smectites. Part III: Alteration of basic pyroclastic rocksA case study from the Troodos Ophiolite Complex, Cyprus
- Ganterite, the barium mica Ba0.5K0.5Al2(Al1.5Si2.5)O10(OH)2, from Oreana, Nevada
- Letter. Transformation of pentlandite to violarite under mild hydrothermal conditions