Abstract
A shock-induced polymorph (TiO2 II) of anatase and rutile has been identified in breccias from the late Eocene Chesapeake Bay impact structure. The breccia samples are from a recent, partially cored test hole in the central uplift at Cape Charles, Virginia. The drill cores from 744 to 823 m depth consist of suevitic crystalline-clast breccia and brecciated cataclastic gneiss in which the TiO2 phases anatase and rutile are common accessory minerals. Electron-microprobe imaging and laser Raman spectroscopy of TiO2 crystals, and powder X-ray diffraction (XRD) of mineral concentrates, confirm that a high-pressure, α-PbO2 structured polymorph of TiO2 (TiO2 II) coexists with anatase and rutile in matrix-hosted crystals and in inclusions within chlorite. Raman spectra of this polymorph include strong bands at wavenumbers (cm.1) 175, 281, 315, 342, 356, 425, 531, 571, and 604; they appear with anatase bands at 397, 515, and 634 cm-1, and rutile bands at 441 and 608 cm-1. XRD patterns reveal 12 lines from the polymorph that do not significantly interfere with those of anatase or rutile, and are consistent with the TiO2 II that was first reported to occur naturally as a shock-induced phase in rutile from the Ries crater in Germany. The recognition here of a second natural shock-induced occurrence of TiO2 II suggests that its presence in rocks that have not been subjected to ultrahigh-pressure regional metamorphism can be a diagnostic indicator for confirmation of suspected impact structures.
© 2015 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Structural model for the biogenic Mn oxide produced by Pseudomonas putida
- Electron-beam (5–10 keV) damage in triplite-group phosphates: Consequences for electron-microprobe analysis of fluorine
- Vacancy defects in MgO at high pressure
- Plastic flow of pyrope at mantle pressure and temperature
- Parvo-mangano-edenite, parvo-manganotremolite, and the solid solution between Ca and Mn2+ at the M4 site in amphiboles
- Reinvestigation of the MgSiO3 perovskite structure at high pressure
- The mechanism and kinetics of α-NiS oxidation in the temperature range 670–700°C
- Influence of charge location on 29Si NMR chemical shift of 2:1 phyllosilicates
- The size distribution of exsolution lamellae in iron-free clinopyroxene
- The high-pressure phase transformation and breakdown of MgFe2O4
- Elastic behavior, phase transition, and pressure induced structural evolution of analcime
- A new chemical etching technique for peridotites using molten anhydrous borax
- Poppiite, the V3+ end-member of the pumpellyite group: Description and crystal structure
- Cation redistribution in the octahedral sheet during diagenesis of illite-smectites from Jurassic and Cambrian oil source rock shales
- A shock-induced polymorph of anatase and rutile from the Chesapeake Bay impact structure, Virginia, U.S.A.
- Water in the interlayer region of birnessite: Importance in cation exchange and structural stability
- In situ HAFM study of the thermal dehydration on gypsum (010) surfaces
- Influence of dehydration kinetics on T-O-T bridge breaking in zeolites with framework type STI: The case of stellerite
- Estimation of volume fractions of liquid and vapor phases in fluid inclusions, and definition of inclusion shapes
- Thermodynamics of uranyl minerals: Enthalpies of formation of uranyl oxide hydrates
- SIMS investigation of electron-beam damage to hydrous, rhyolitic glasses: Implications for melt inclusion analysis
- Synthetic Ag-rich tourmaline: Structure and chemistry
- Genesis and compositional heterogeneity of smectites. Part III: Alteration of basic pyroclastic rocksA case study from the Troodos Ophiolite Complex, Cyprus
- Ganterite, the barium mica Ba0.5K0.5Al2(Al1.5Si2.5)O10(OH)2, from Oreana, Nevada
- Letter. Transformation of pentlandite to violarite under mild hydrothermal conditions
Articles in the same Issue
- Structural model for the biogenic Mn oxide produced by Pseudomonas putida
- Electron-beam (5–10 keV) damage in triplite-group phosphates: Consequences for electron-microprobe analysis of fluorine
- Vacancy defects in MgO at high pressure
- Plastic flow of pyrope at mantle pressure and temperature
- Parvo-mangano-edenite, parvo-manganotremolite, and the solid solution between Ca and Mn2+ at the M4 site in amphiboles
- Reinvestigation of the MgSiO3 perovskite structure at high pressure
- The mechanism and kinetics of α-NiS oxidation in the temperature range 670–700°C
- Influence of charge location on 29Si NMR chemical shift of 2:1 phyllosilicates
- The size distribution of exsolution lamellae in iron-free clinopyroxene
- The high-pressure phase transformation and breakdown of MgFe2O4
- Elastic behavior, phase transition, and pressure induced structural evolution of analcime
- A new chemical etching technique for peridotites using molten anhydrous borax
- Poppiite, the V3+ end-member of the pumpellyite group: Description and crystal structure
- Cation redistribution in the octahedral sheet during diagenesis of illite-smectites from Jurassic and Cambrian oil source rock shales
- A shock-induced polymorph of anatase and rutile from the Chesapeake Bay impact structure, Virginia, U.S.A.
- Water in the interlayer region of birnessite: Importance in cation exchange and structural stability
- In situ HAFM study of the thermal dehydration on gypsum (010) surfaces
- Influence of dehydration kinetics on T-O-T bridge breaking in zeolites with framework type STI: The case of stellerite
- Estimation of volume fractions of liquid and vapor phases in fluid inclusions, and definition of inclusion shapes
- Thermodynamics of uranyl minerals: Enthalpies of formation of uranyl oxide hydrates
- SIMS investigation of electron-beam damage to hydrous, rhyolitic glasses: Implications for melt inclusion analysis
- Synthetic Ag-rich tourmaline: Structure and chemistry
- Genesis and compositional heterogeneity of smectites. Part III: Alteration of basic pyroclastic rocksA case study from the Troodos Ophiolite Complex, Cyprus
- Ganterite, the barium mica Ba0.5K0.5Al2(Al1.5Si2.5)O10(OH)2, from Oreana, Nevada
- Letter. Transformation of pentlandite to violarite under mild hydrothermal conditions