Abstract
During diagenesis of Jurassic and Cambrian oil source rock shales illite-smectite(-vermiculite) [I-S(-V)] is transformed to illite-tobelite-smectite(-vermiculite) [I-T-S(-V)]. This transformation of S layers to T layers takes place by an increase in tetrahedral charge through Al for Si substitution and subsequent fixation of interlayer NH4, accompanied by an increase in Al and a decrease in Fe and Mg in the octahedral sheet. In the present investigation, the distribution of isomorphous cations in octahedral sheets of trans-vacant I-S(-V) and I-T-S(-V) was studied by Mössbauer and Infrared (IR) spectroscopies. Mössbauer spectra have been modeled using numerical values of the Fe3+ and Fe2+ quadrupole doublets corresponding to local cation arrangements around Fe3+ and Fe2+ in octahedral sheets of micaceous minerals. To interpret IR spectra in the OH-stretching region, frequencies for each pair of cations bonded to OH groups determined for micas and I-S are used. Combination of Mössbauer and IR data by computer simulation provides two-dimensional cation distributions of octahedral cations. The Jurassic and Cambrian I-S(-V) and I-T-S(-V) have clustered octahedral sheets. Ordered clusters of mixed cation composition (Mg, Al, Fe3+, and Fe2+) with regular alternation of di- and trivalent cations and Fe3+-clusters dispersed over an Al-matrix are found in detrital samples. In diagenetically transformed samples, ordered clusters persist while Fe3+-clusters degenerate to either short chains consisting of two Fe-Fe pairs or to isolated Fe-Fe pairs oriented along the b, b1, and b2 directions. The release of Fe and Mg during diagenesis occurs from Fe3+ clusters and through partial destruction of ordered clusters and of b1, b2-oriented Mg-Mg pairs. However, as the cation composition and the short-range cation order within the clusters are preserved and the Al for Fe and Mg substitution occurs at cluster edges, the diagenetic transformation of S (and V) to T layers in both the Jurassic and Cambrian I-S(-V) proceeds through a solid-phase transformation and not through dissolution-reprecipitation.
© 2015 by Walter de Gruyter Berlin/Boston
Articles in the same Issue
- Structural model for the biogenic Mn oxide produced by Pseudomonas putida
- Electron-beam (5–10 keV) damage in triplite-group phosphates: Consequences for electron-microprobe analysis of fluorine
- Vacancy defects in MgO at high pressure
- Plastic flow of pyrope at mantle pressure and temperature
- Parvo-mangano-edenite, parvo-manganotremolite, and the solid solution between Ca and Mn2+ at the M4 site in amphiboles
- Reinvestigation of the MgSiO3 perovskite structure at high pressure
- The mechanism and kinetics of α-NiS oxidation in the temperature range 670–700°C
- Influence of charge location on 29Si NMR chemical shift of 2:1 phyllosilicates
- The size distribution of exsolution lamellae in iron-free clinopyroxene
- The high-pressure phase transformation and breakdown of MgFe2O4
- Elastic behavior, phase transition, and pressure induced structural evolution of analcime
- A new chemical etching technique for peridotites using molten anhydrous borax
- Poppiite, the V3+ end-member of the pumpellyite group: Description and crystal structure
- Cation redistribution in the octahedral sheet during diagenesis of illite-smectites from Jurassic and Cambrian oil source rock shales
- A shock-induced polymorph of anatase and rutile from the Chesapeake Bay impact structure, Virginia, U.S.A.
- Water in the interlayer region of birnessite: Importance in cation exchange and structural stability
- In situ HAFM study of the thermal dehydration on gypsum (010) surfaces
- Influence of dehydration kinetics on T-O-T bridge breaking in zeolites with framework type STI: The case of stellerite
- Estimation of volume fractions of liquid and vapor phases in fluid inclusions, and definition of inclusion shapes
- Thermodynamics of uranyl minerals: Enthalpies of formation of uranyl oxide hydrates
- SIMS investigation of electron-beam damage to hydrous, rhyolitic glasses: Implications for melt inclusion analysis
- Synthetic Ag-rich tourmaline: Structure and chemistry
- Genesis and compositional heterogeneity of smectites. Part III: Alteration of basic pyroclastic rocksA case study from the Troodos Ophiolite Complex, Cyprus
- Ganterite, the barium mica Ba0.5K0.5Al2(Al1.5Si2.5)O10(OH)2, from Oreana, Nevada
- Letter. Transformation of pentlandite to violarite under mild hydrothermal conditions
Articles in the same Issue
- Structural model for the biogenic Mn oxide produced by Pseudomonas putida
- Electron-beam (5–10 keV) damage in triplite-group phosphates: Consequences for electron-microprobe analysis of fluorine
- Vacancy defects in MgO at high pressure
- Plastic flow of pyrope at mantle pressure and temperature
- Parvo-mangano-edenite, parvo-manganotremolite, and the solid solution between Ca and Mn2+ at the M4 site in amphiboles
- Reinvestigation of the MgSiO3 perovskite structure at high pressure
- The mechanism and kinetics of α-NiS oxidation in the temperature range 670–700°C
- Influence of charge location on 29Si NMR chemical shift of 2:1 phyllosilicates
- The size distribution of exsolution lamellae in iron-free clinopyroxene
- The high-pressure phase transformation and breakdown of MgFe2O4
- Elastic behavior, phase transition, and pressure induced structural evolution of analcime
- A new chemical etching technique for peridotites using molten anhydrous borax
- Poppiite, the V3+ end-member of the pumpellyite group: Description and crystal structure
- Cation redistribution in the octahedral sheet during diagenesis of illite-smectites from Jurassic and Cambrian oil source rock shales
- A shock-induced polymorph of anatase and rutile from the Chesapeake Bay impact structure, Virginia, U.S.A.
- Water in the interlayer region of birnessite: Importance in cation exchange and structural stability
- In situ HAFM study of the thermal dehydration on gypsum (010) surfaces
- Influence of dehydration kinetics on T-O-T bridge breaking in zeolites with framework type STI: The case of stellerite
- Estimation of volume fractions of liquid and vapor phases in fluid inclusions, and definition of inclusion shapes
- Thermodynamics of uranyl minerals: Enthalpies of formation of uranyl oxide hydrates
- SIMS investigation of electron-beam damage to hydrous, rhyolitic glasses: Implications for melt inclusion analysis
- Synthetic Ag-rich tourmaline: Structure and chemistry
- Genesis and compositional heterogeneity of smectites. Part III: Alteration of basic pyroclastic rocksA case study from the Troodos Ophiolite Complex, Cyprus
- Ganterite, the barium mica Ba0.5K0.5Al2(Al1.5Si2.5)O10(OH)2, from Oreana, Nevada
- Letter. Transformation of pentlandite to violarite under mild hydrothermal conditions