Startseite Naturwissenschaften Influence of crystal chemistry on ideal plastic shear anisotropy in forsterite: First principle calculations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Influence of crystal chemistry on ideal plastic shear anisotropy in forsterite: First principle calculations

  • Julien Durinck , Alexandre Legris und Patrick Cordier EMAIL logo
Veröffentlicht/Copyright: 28. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We present ab initio calculations of ideal shear strengths (ISS) in forsterite at zero temperature using pseudopotential density functional theory within the generalized gradient approximation. A localized rigid-body shear is imposed on a given plane of an infinite defect-free crystal. The energy increase associated with this shear (called the generalized stacking fault energy) gives access to the ISS. The goal of this study is to assess the influence of crystal chemistry on the intrinsic resistance of plastic shear of a mineral like forsterite. ISS have been calculated for plastic shear along [100], [010], and [001] in various potential glide planes of forsterite. We show that the [001] slip, which corresponds experimentally to an easy glide at low temperature, exhibits the lowest energy barrier. The [010] glide is precluded because it involves very unfavorable atom impingements.

Received: 2004-6-3
Accepted: 2004-11-9
Published Online: 2015-3-28
Published in Print: 2005-7-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. A synthesis of systematic mineralogy
  2. Oxidation/alteration of pentlandite and pyrrhotite surfaces at pH 9.3: Part 1. Assignment of XPS spectra and chemical trends
  3. Oxidation of pentlandite and pyrrhotite surfaces at pH 9.3: Part 2. Effect of xanthates and dissolved oxygen
  4. X-ray Rietveld refinement and FTIR spectra of synthetic (Si,Ge)-richterites
  5. Influence of crystal chemistry on ideal plastic shear anisotropy in forsterite: First principle calculations
  6. High-temperature Mössbauer study of Fe-substituted mullite
  7. Pressure and temperature-dependence of water solubility in Fe-free wadsleyite
  8. Quartz exsolution in clinopyroxene is not proof of ultrahigh pressures: Evidence from eclogites from the Eastern Blue Ridge, Southern Appalachians, U.S.A.
  9. The visible and infrared spectral properties of jarosite and alunite
  10. Wakabayashilite, [(As,Sb)6S9][As4S5]: Crystal structure, pseudosymmetry, twinning, and revised chemical formula
  11. Compression of albite, NaAlSi3O8
  12. Effect of polymorphic transition on oxygen isotope fractionation between aragonite, calcite, and water: A low-temperature experimental study
  13. Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses
  14. A high-pressure polytypic transformation in type-I chlorite
  15. Experimental determination of crystal growth rates in highly supercooled aluminosilicate liquids: Implications for rate-controlling processes
  16. P-V equation of State, thermal expansion, and P-T stability of synthetic zincochromite (ZnCr2O4 spinel)
  17. Niksergievite, [Ba1.33Ca0.67Al(CO3)(OH)4][Al2(AlSi3O10)(OH)2]·nH2O, a new phyllosilicate related to the surite-ferrisurite series
  18. The crystal-chemistry of holmquistites: Ferroholmquistite from Greenbushes (Western Australia) and hints for compositional constraints in BLi amphiboles
  19. Dissakisite-(La) from the Ulten zone peridotite (Italian Eastern Alps): A new end-member of the epidote group
  20. Mazzite-Na, a new zeolite from Boron, California: Its description and crystal structure
  21. Low-temperature illitization of smectite in the late eocene and early oligocene of the Isle of Wight (Hampshire basin), U.K.
  22. First reported sedimentary occurrence of berlinite (AlPO4) in phosphate-bearing sediments from Cioclovina Cave, Romania—Comment
  23. Optical and near infrared spectra of ringwoodite to 21.5 GPa: Implications for radiative heat transport in the mantle
  24. Letter. Observation of nano-clustered calcite growth via a transient phase mediated by organic polyanions: A close match for biomineralization
  25. Letter. Aluminum coordination and the densification of high-pressure aluminosilicate glasses
  26. Letter. Crystal chemistry of a high-pressure C2/c clinopyroxene with six-coordinated silicon
Heruntergeladen am 14.12.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am.2005.1738/html?lang=de
Button zum nach oben scrollen