Startseite Wakabayashilite, [(As,Sb)6S9][As4S5]: Crystal structure, pseudosymmetry, twinning, and revised chemical formula
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Wakabayashilite, [(As,Sb)6S9][As4S5]: Crystal structure, pseudosymmetry, twinning, and revised chemical formula

  • Paola Bonazzi EMAIL logo , Giulio I. Lampronti , Luca Bindi und Stefano Zanardi
Veröffentlicht/Copyright: 28. März 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The crystal structure of the rare mineral wakabayashilite was solved by direct methods using intensity data collected from a twinned crystal. This study revealed that, in spite of the strong hexagonal pseudosymmetry, the structure is orthorhombic (space group Pna21) with ao = 25.262(1), bo = 14.563(1), co = 6.492(1) Å, and Vo = 2388.4(2) Å3. The refinement of an anisotropic model led to an R index of 6.08% for 3135 observed reflections [Fo > 4σ(Fo)] and 8.71% for all 4260 independent reflections. Wakabayashilite is twinned by reticular merohedry [twin plane (110)]. There are two structural units in the structure: (1) [M6S9] bundle-like chains running along the [001] axis, consisting of corner-sharing MS3 trigonal pyramids (M = As, Sb), and (2) rods of As4S5 cage-like molecules, located in the space between three bundles and held together by van der Waals forces. The crystal chemical formula was therefore revised according to the structural results, yielding [(As,Sb)6S9][As4S5] (Z = 4). Both the intramolecular As-S and As-As bond distances and those within the bundle-like units match closely the values commonly observed in the molecule-formed structures of other arsenic sulfides and those found in orpiment, respectively. To contribute to the understanding of the effects of light exposure on the structure of the arsenic sulfides, the crystal was exposed to filtered polychromatic light. The unit-cell parameters were measured after each exposure. The results showed that the As4S5 molecules do not undergo any transformations, as previously found by exposing uzonite to light.

Received: 2004-9-4
Accepted: 2004-12-18
Published Online: 2015-3-28
Published in Print: 2005-7-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. A synthesis of systematic mineralogy
  2. Oxidation/alteration of pentlandite and pyrrhotite surfaces at pH 9.3: Part 1. Assignment of XPS spectra and chemical trends
  3. Oxidation of pentlandite and pyrrhotite surfaces at pH 9.3: Part 2. Effect of xanthates and dissolved oxygen
  4. X-ray Rietveld refinement and FTIR spectra of synthetic (Si,Ge)-richterites
  5. Influence of crystal chemistry on ideal plastic shear anisotropy in forsterite: First principle calculations
  6. High-temperature Mössbauer study of Fe-substituted mullite
  7. Pressure and temperature-dependence of water solubility in Fe-free wadsleyite
  8. Quartz exsolution in clinopyroxene is not proof of ultrahigh pressures: Evidence from eclogites from the Eastern Blue Ridge, Southern Appalachians, U.S.A.
  9. The visible and infrared spectral properties of jarosite and alunite
  10. Wakabayashilite, [(As,Sb)6S9][As4S5]: Crystal structure, pseudosymmetry, twinning, and revised chemical formula
  11. Compression of albite, NaAlSi3O8
  12. Effect of polymorphic transition on oxygen isotope fractionation between aragonite, calcite, and water: A low-temperature experimental study
  13. Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses
  14. A high-pressure polytypic transformation in type-I chlorite
  15. Experimental determination of crystal growth rates in highly supercooled aluminosilicate liquids: Implications for rate-controlling processes
  16. P-V equation of State, thermal expansion, and P-T stability of synthetic zincochromite (ZnCr2O4 spinel)
  17. Niksergievite, [Ba1.33Ca0.67Al(CO3)(OH)4][Al2(AlSi3O10)(OH)2]·nH2O, a new phyllosilicate related to the surite-ferrisurite series
  18. The crystal-chemistry of holmquistites: Ferroholmquistite from Greenbushes (Western Australia) and hints for compositional constraints in BLi amphiboles
  19. Dissakisite-(La) from the Ulten zone peridotite (Italian Eastern Alps): A new end-member of the epidote group
  20. Mazzite-Na, a new zeolite from Boron, California: Its description and crystal structure
  21. Low-temperature illitization of smectite in the late eocene and early oligocene of the Isle of Wight (Hampshire basin), U.K.
  22. First reported sedimentary occurrence of berlinite (AlPO4) in phosphate-bearing sediments from Cioclovina Cave, Romania—Comment
  23. Optical and near infrared spectra of ringwoodite to 21.5 GPa: Implications for radiative heat transport in the mantle
  24. Letter. Observation of nano-clustered calcite growth via a transient phase mediated by organic polyanions: A close match for biomineralization
  25. Letter. Aluminum coordination and the densification of high-pressure aluminosilicate glasses
  26. Letter. Crystal chemistry of a high-pressure C2/c clinopyroxene with six-coordinated silicon
Heruntergeladen am 19.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am.2005.1809/html
Button zum nach oben scrollen