Startseite Synthesis and crystal structure of Mg-bearing Fe9O11: New insight in the complexity of Fe-Mg oxides at conditions of the deep upper mantle
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis and crystal structure of Mg-bearing Fe9O11: New insight in the complexity of Fe-Mg oxides at conditions of the deep upper mantle

  • Takayuki Ishii EMAIL logo , Laura Uenver-Thiele , Alan B. Woodland , Edith Alig und Tiziana Boffa Ballaran
Veröffentlicht/Copyright: 30. Oktober 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A novel Mg-bearing iron oxide Mg0.87(1)Fe4.13(1)2+Fe43+O11 was synthesized at 12 GPa and 1300 °C using a large volume press. Rietveld structural analysis was conducted with a laboratory X‑ray diffraction pattern obtained at ambient conditions. The crystal structure, which has one oxygen trigonal prism site and four octahedral sites for the cations, was found to be isostructural with Ca2Fe7O11. The unit-cell lattice parameters are a = 9.8441(5) Å, b = 2.8920(1) Å, c = 14.1760(6) Å, β = 99.956(4)°, V = 397.50(3) Å3, and Z = 2 (monoclinic, C2/m). Mg and Fe cations are disordered on the trigonal prism site and on two of the four octahedral sites, and the remaining Fe is accommodated at the other two octahedral sites. The present structure is closely related to the other recently discovered Fe oxide structures, e.g., Fe4O5 and Fe5O6, by distortion derived either from incorporation (Fe4O5) or removal (Fe5O6) of an edge-shared FeO6 single octahedral chain in their structures. The present synthesis at deep upper mantle conditions and the structural relationships observed between various novel Mg-Fe oxides indicate that a series of different phases become stable above 10 GPa and that their relative stabilities (Fe2+/Fe3+) must be controlled by oxygen fugacity.

Acknowledgments

This project was supported by grants from the Deutsche Forschungsgemeinschaft (DFG) to A.B.W. (Wo 652/20-2) and T.B.B. (Bo 2550/7-2). T.I. has been supported by an Alexander von Humboldt Postdoctoral Fellowship.

References cited

Boffa-Ballaran, T., Uenver-Thiele, L., Woodland, A.B., and Frost, D.J. (2015) Complete substitution of Fe2+ by Mg in Fe4O5 The crystal structure of the Mg2Fe2O5 end-member. American Mineralogist, 100, 628–632.10.2138/am-2015-5138Suche in Google Scholar

Brey, G.P., Bulatov, V., and Girnis, A. (2008) Geobarometry for peridotites: experiments in simple and natural systems from 6 to 10 GPa. Journal of Petrology, 49, 3–24.10.1093/petrology/egm067Suche in Google Scholar

Brown, I.D., and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244–247.10.1107/S0108768185002063Suche in Google Scholar

Bykova, E., Dubrovinsky, L., Dubrovinskaia, N., Bykov, M., McCammon, C., Ovsyannikov, S.V., Liermann, H.-P., Kupenko, I., Chumakov, A.I., Rüffer, R., Hanfland, M., and Hanfland, M. (2016) Structural complexity of simple Fe2O3 at high pressures and temperatures. Nature Communications, 7, 10661.10.1038/ncomms10661Suche in Google Scholar

Dubrovinsky, L.S., Dubrovinskaia, N.A., McCammon, C., Rozenberg, G.K., Ahuja, R., Osorio-Guillen, M.V., Dmitriev, J., Weber, H.P., Le Bihan, T., and Johansson, B. (2003) The structure of the metallic high-pressure Fe3O4 polymorph: experimental and theoretical study. Journal of Physics: Condensed Matter, 15, 7697.Suche in Google Scholar

Evrard, O., Malaman, B., Jeannot, F., Courtois, A., Alebouyeh, H., and Gerardin, R. (1980) Mise en évidence de CaF2e4O6 et détermination des structures cristallines des ferrites de calcium CaFe2+nO4+n (n=1, 2, 3): nouvel exemple d’intercroissance. Journal of Solid State Chemistry, 35, 112–119. [Editor’s note: formula CaF2e4O6 is as-written online.]10.1016/0022-4596(80)90471-5Suche in Google Scholar

Guignard, J., and Crichton, W.A. (2014) Synthesis and recovery of bulk Fe4O5 from magnetite, Fe3O4 A member of a self-similar series of structures for the lower mantle and transition zone. Mineralogical Magazine, 78, 2, 361–371.10.1180/minmag.2014.078.2.09Suche in Google Scholar

Haavik, C., Stølen, S., Fjellvåg, H., Hanfland, M., and Häusermann, D. (2000) Equation of state of magnetite and its high-pressure modification: Thermodynamics of the Fe-O system at high pressure. American Mineralogist, 85, 514–523.10.2138/am-2000-0413Suche in Google Scholar

Hoppe, R. (1979) Effective coordination numbers (ECoN) and mean fictive ionic radii (MEFIR). Zeitschrift für Kristallographie-Crystalline Materials, 150, 23–52.10.1524/zkri.1979.150.14.23Suche in Google Scholar

Izumi, F., and Momma, K. (2007) Three-dimensional visualization in powder diffraction. Solid State Phenomena, 130, 15–20.10.4028/3-908451-40-x.15Suche in Google Scholar

Jacob, D.E., Piazolo, S., Schreiber, A., and Trimby, P. (2016) Redox-freezing and nucleation of diamond via magnetite formation in the Earth’s mantle. Nature Communications, 7, 11891.10.1038/ncomms11891Suche in Google Scholar PubMed PubMed Central

Larson, A.C. and Von Dreele, R.B. (2000) General structure analysis system (GSAS). Los Alamos National Laboratory Report, LAUR, 86-748.Suche in Google Scholar

Lavina, B., and Meng, Y. (2015) Unraveling the complexity of iron oxides at high pressureand temperature: Synthesis of Fe5O6 Science Advances 1, no. 5, e1400260.10.1126/sciadv.1400260Suche in Google Scholar

Lavina, B., Dera, P., Kim, E., Meng, Y., Downs, R.T., Weck, P.F., Sutton, S.R., and Zhao, Y. (2011) Discovery of the recoverable high-pressure iron oxide Fe4O5 Proceedings of the National Academy of Science, 108, 17281–17285.10.1073/pnas.1107573108Suche in Google Scholar

Malaman, B., Alebouyeh, H., Jeannot, F., Courtois, A., Gerardin, R., and Evrard, O. (1981) Preparation et caracterisation des ferrites de calcium CaFe2+nO4+n A valeurs fractionnaires den (3/2, 5/2) et leur incidence sur le diagramme Fe-Ca-O A 1120°C. Materials Research Bulletin, 16, 1139–1148.10.1016/0025-5408(81)90290-7Suche in Google Scholar

Momma, K., and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 1272–1276.10.1107/S0021889811038970Suche in Google Scholar

Myhill, B., Ojwang, D.O., Ziberna, L., Frost, D., Boffa Ballaran, T., and Miyamjima, N. (2016) On the P-T-fO2 stability of Fe4O5 and Fe5O6-rich phases: a thermodynamic and experimental study. Contributions to Mineralogy and Petrology, 171, 1–11.Suche in Google Scholar

Schollenbruch, K., Woodland, A.B., Frost, D.J., Wang, Y., Sanehira, T., and Langenhorst, F. (2011) In situ determinationof the spinel-post-spinel transition in Fe3O4 at high pressure and temperature by synchrotron X‑ray diffraction. American Mineralogist, 96, 820–827.10.2138/am.2011.3642Suche in Google Scholar

Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751–767.10.1107/S0567739476001551Suche in Google Scholar

Sinmyo, R., Bykova, E., Ovsyannikov, S.V., McCammon, C., Kupenko, I., Ismailova, L., and Dubrovinsky, L. (2016) Discovery of Fe7O9 a new iron oxide with a complex monoclinic structure. Nature scientific reports, 6, 32852.10.1038/srep32852Suche in Google Scholar PubMed PubMed Central

Temple, P.A., and Hathaway, C.E. (1973) Multiphonon Raman spectrum of silicon. Physical Review B, 7, 3685.10.1103/PhysRevB.7.3685Suche in Google Scholar

Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34, 210–213.10.1107/S0021889801002242Suche in Google Scholar

Toraya, H. (1990) Array-type universal profile function for powder pattern fitting. Journal of Applied Crystallography, 23, 485–491.10.1107/S002188989000704XSuche in Google Scholar

Uenver-Thiele, L., Woodland, A.B., Boffa Ballaran, T., Miyajima, N., and Frost, D.J. (2017a) Phase relations of MgFe2O4 at conditions of the deep upper mantle and transition zone. American Mineralogist, 102, 632–642.10.2138/am-2017-5871Suche in Google Scholar

Uenver-Thiele, L., Woodland, A.B., Boffa Ballaran, T., Miyajima, N., and Frost, D.J. (2017b) Phase relations of Fe-Mg spinels including new high-pressure post-spinel phases and implications for natural samples. American Mineralogist, 102, 2054–2064.10.2138/am-2017-6119Suche in Google Scholar

Uenver-Thiele, L., Woodland, A.B., Miyajima, N., Ballaran, T.B., and Frost, D.J. (2018) Behavior of Fe4O5–Mg2Fe2O5 solid solutions and their relation to coexisting Mg–Fe silicates and oxide phases. Contributions to Mineralogy and Petrology, 173, 1–16.10.1007/s00410-018-1443-8Suche in Google Scholar

Walker, D., Carpenter, M.A., and Hitch, C.M. (1990) Some simplifications to multianvil devices for high pressure experiments. American Mineralogist, 75, 1020–1028.Suche in Google Scholar

Woodland, A.B., Frost, D.J., Trots, D.M., Klimm, K., Mezouar, M. (2012) In situ observation of the breakdown of magnetite (Fe3O4) to Fe4O5 and hematite at high pressures and temperatures. American Mineralogist, 97, 1808–1811.10.2138/am.2012.4270Suche in Google Scholar

Woodland, A.B., Uenver-Thiele, L., and Boffa Ballaran, T. (2015) Synthesis of Fe5O6 and the high-pressure stability of Fe2+-Fe3+-oxides related to Fe4O5 Goldschmidt Abstracts, 2015, 3446.Suche in Google Scholar

Woodland, A. B., Uenver-Thiele, L., and Boffa Ballaran, T. (2016) High P-T stability of Fe5O6 and its coexistence with other Fe-oxides. Second European Mineralogical Conference, Rimini, Italy, S14-4 (abstract).Suche in Google Scholar

Received: 2018-05-20
Accepted: 2018-07-30
Published Online: 2018-10-30
Published in Print: 2018-11-27

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Highlights and Breakthroughs
  2. Probing planetary core structure and dynamics using density and sound velocity
  3. Mapping the distribution of melt during anatexis at the source area of crustal granites by synchrotron μ-XRF
  4. Geochemical constraints on residual metal and sulfide in the sources of lunar mare basalts
  5. High-temperature behavior of natural ferrierite: In-situ synchrotron X-ray powder diffraction study
  6. The crystal chemistry of the sakhaite–harkerite solid solution
  7. Quantitative analysis of H-species in anisotropic minerals by unpolarized infrared spectroscopy: An experimental evaluation
  8. Liquid properties in the Fe-FeS system under moderate pressure: Tool box to model small planetary cores
  9. Solution mechanisms of COHN fluids in melts to upper mantle temperature, pressure, and redox conditions
  10. Dating phosphates of the strongly shocked Suizhou chondrite
  11. Quantitative measurement of olivine composition in three dimensions using helical-scan X-ray micro-tomography
  12. Chemical fingerprints and residence times of olivine in the 1959 Kilauea Iki eruption, Hawaii: Insights into picrite formation
  13. Predicting olivine composition using Raman spectroscopy through band shift and multivariate analyses
  14. Dehydrogenation and dehydroxylation as drivers of the thermal decomposition of Fe-chlorites
  15. High-pressure granulite facies metamorphism (~1.8 GPa) revealed in silica-undersaturated garnet-spinel-corundum gneiss, Central Maine Terrane, Connecticut, U.S.A.
  16. Letter
  17. Raman elastic geobarometry for anisotropic mineral inclusions
  18. Synthesis and crystal structure of Mg-bearing Fe9O11: New insight in the complexity of Fe-Mg oxides at conditions of the deep upper mantle
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2018-6646/html
Button zum nach oben scrollen