Startseite Polarized FTIR spectroscopic examination on hydroxylation in the minerals of the wolframite group, (Fe,Mn,Mg)[W,(Nb,Ta)][O,(OH)]4
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Polarized FTIR spectroscopic examination on hydroxylation in the minerals of the wolframite group, (Fe,Mn,Mg)[W,(Nb,Ta)][O,(OH)]4

  • Dominik Talla EMAIL logo , Anton Beran , Radek Škoda und Zdeněk Losos
Veröffentlicht/Copyright: 3. April 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Polarized FTIR spectroscopic measurements of 11 natural wolframite single crystals from different occurrences revealed the common presence of structurally bound OH groups in their crystal lattice, with potential influence on the properties of thisse geologically and technologically important group of compounds. Despite differences in the appearance of the OH absorption pattern, dependent among other on the end-member ratio, two types of “intrinsic” OH defects could be discerned from detailed studies of the pleochroic behavior of the absorption bands both at 80 K and room temperature. The accompanying chemical analyses by the electron microprobe helped to clearly identify the substitution trend W6+ + O2– ↔ (Nb,Ta)5+ + OH as the prevailing hydrogen incorporation mechanism into wolframite. The assignment of the observed IR absorption phenomena to hydrous defects was confirmed by the results of deuteration experiments and the negligible contribution of included impurities to the FTIR spectra in the OH absorption region. The results obtained in this study of natural wolframite crystals can be used to detect and analyze hydrous defects in synthetic technologically important tungstates.

Acknowledgments

Mg-enriched wolframite samples CET and OLH from Czech metagreisens were kindly provided to us by L. Losertova. Sample 12767 was obtained from the mineral collection of the Institut für Mineralogie und Kristallographie, Universität Wien, all other samples from the mineral collection of the Department of Geological Sciences, Masaryk University. We are indebted to G. Giester for the initial orientation of the wolframite crystals and A. Wagner for subsequent careful sample preparation. We thank B. Mihailova, H. Skogby and an anonymous reviewer for their helpful comments, which enabled us to significantly improve the quality of this paper.

References cited

Bell, D.R., Rossman, G.R., Maldener, J., Endisch, D., and Rauch, F. (2004) Hydroxide in kyanite: A quantitative determination of the absolute amount and calibration of the IR spectrum. American Mineralogist, 89, 998–1003.10.2138/am-2004-0710Suche in Google Scholar

Beran, A., and Zemann, J. (1971) Messung des Ultrarot-Pleochroismus von Mineralen. XI. Der Pleochroismus der OH-Streckfrequenz in Rutil, Anatas, Brookit und Cassiterit. Tschermaks Mineralogische und Petrographische Mitteilungen, 15, 71–80 (in German).10.1007/BF01087495Suche in Google Scholar

Beran, A., Langer, K., and Andrut, M. (1993) Single crystal infrared spectra in the range of OH fundamentals of paragenetic garnet, omphacite and kyanite in an eclogitic mantle xenolith. Mineralogy and Petrology, 48, 257–268.10.1007/BF01163102Suche in Google Scholar

Beran, A., Talla, D., Losos, Z., and Pinkas, J. (2010) Traces of structural H2O molecules in baryte. Physics and Chemistry of Minerals, 37, 159–166.10.1007/s00269-009-0320-4Suche in Google Scholar

Burns, R.G., and Strens, R.G.J. (1966) Infrared study of hydroxyl bands in clinoamphiboles. Science, 153, 890–892.10.1126/science.153.3738.890Suche in Google Scholar PubMed

Cid-Dresdner, H., and Escobar, C. (1968) The crystal structure of ferberite, FeWO4. Zeitschrift für Kristallographie, 127, 61–72.10.1524/zkri.1968.127.1-4.61Suche in Google Scholar

Downs, R.T. (2006) The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and Abstracts of the 19th General Meeting of the IMA in Kobe, Japan, O03-13.Suche in Google Scholar

Ferenc, S., and Uher, P. (2007) Magnesian wolframite from hydrothermal quartz veins in the Rochovce granite exocontact, Ochtiná, Western Carpathians, Slovakia. Neues Jahrbuch für Mineralogie, Abhandlungen, 183, 165–172.10.1127/0077-7757/2007/0066Suche in Google Scholar

Guha Thakurta, S.R., and Dutta, A.K. (1980) Electric and thermoelectric properties of wolframite (Fe,Mn)WO4 crystals. Bulletin de Minéralogie,103, 27–32.10.3406/bulmi.1980.7368Suche in Google Scholar

Guillen, R., and Regnard, J.R. (1985) Magnetic properties of natural and synthetic wolframites FexMn1−xWO4. Physics and Chemistry of Minerals,12, 246–254.10.1007/BF00311294Suche in Google Scholar

Jingwen, M., Yanbo, C., Maohong, C., and Pirajno, F. (2013) Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita, 48, 267–294.10.1007/s00126-012-0446-zSuche in Google Scholar

Johnson, E.A. (2006) Water in nominally anhydrous crustal minerals: Speciation, concentration and geologic significance. In H. Keppler and J.R. Smyth, Eds., Water in Nominally Anhydrous Minerals, 62, p. 117–154. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia.10.1515/9781501509476-010Suche in Google Scholar

Koch-Müller, M., and Rhede, D. (2010) IR absorption coefficients for water in nominally anhydrous high-pressure minerals. American Mineralogist, 95, 770–775.10.2138/am.2010.3358Suche in Google Scholar

Lalić, M.V., Popović, Z.S., and Vukajlović, F.R. (2011) Ab initio study of electronic, magnetic and optical properties of CuWO4 tungstate. Computational Materials Science, 50, 1179–1186.10.1016/j.commatsci.2010.11.018Suche in Google Scholar

Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H…O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 1047–1059.10.1007/978-3-7091-6419-8_7Suche in Google Scholar

Libowitzky, E., and Beran, A. (2004) IR spectroscopic characterisation of hydrous species in minerals. In A. Beran and E. Libowitzky, Eds., Spectroscopic Methods in Mineralogy. EMU Notes in Mineralogy, 6, 227–279.10.1180/EMU-notes.6.6Suche in Google Scholar

Libowitzky, E., and Beran, A. (2006) The structure of hydrous species in nominally anhydrous minerals: Information from polarized IR spectroscopy. In H. Keppler and J.R. Smyth, Eds., Water in Nominally Anhydrous Minerals, 62, p. 29–52. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia.10.1515/9781501509476-006Suche in Google Scholar

Libowitzky, E., and Rossman, G.R. (1996) Principles of quantitative absorbance measurements in anisotropic crystals. Physics and Chemistry of Minerals, 23, 319–327.10.1007/BF00199497Suche in Google Scholar

Libowitzky, E., and Rossman, G.R. (1997) An IR absorption calibration for water in minerals. American Mineralogist, 82, 1111–1115.10.2138/am-1997-11-1208Suche in Google Scholar

Libowitzky, E., Beran, A., Wieczorek, A.K., and Wirth, R. (2012) On the presence of a hydrous component in a gemstone variety of intermediate olivine-type triphylite-lithiophilite, Li(Fe,Mn)PO4. Mineralogy and Petrology, 105, 31–39.10.1007/s00710-012-0195-9Suche in Google Scholar

Losertová, L., Houzar, S., Buřival, Z., and Losos, Z. (2012) Wolframite in heavy fraction from the Trucbába—Valcha locality, Moldanubicum. Acta Musei Moraviae, Scientiae Geologicae, 97, 77–84 (in Czech).Suche in Google Scholar

Losertová, L., Buřival, Z., Losos, Z., and Houzar, S. (2013) Mineral assemblages and chemical composition of Mg-wolframite and scheelite from Cetoraz near Pacov, Czech Republic. Acta Musei Moraviae, Scientiae Geologicae, 98, 41–48 (in Czech).Suche in Google Scholar

Losertová, L., Buřival, Z., and Losos, Z. (2014) Mineral assemblage of Sn-W ores from Ovesná Lhota near Světlá nas Sázavou, Czech Republic. Acta Musei Moraviae, Scientiae Geologicae, 99, 69–76 (in Czech).Suche in Google Scholar

Losos, Z., and Beran, A. (2004) OH defects in cassiterite. Mineralogy and Petrology, 81, 219–234.10.1007/s00710-004-0040-xSuche in Google Scholar

Miyawaki, R., Yokoyama, K., Matsubara, S., Furuta, H., Gomi, A., and Murakami, R. (2010) Huanzalaite, MgWO4, a new mineral species from the Huanzala mine, Peru. Canadian Mineralogist, 48, 105–112.10.3749/canmin.48.1.105Suche in Google Scholar

Nasdala, L., Beran, A., Libowitzky, E., and Wolf, D. (2001) The incorporation of hydroxyl groups and molecular water in natural zircon (ZrSiO4). American Journal of Science, 301, 831–857.10.2475/ajs.301.10.831Suche in Google Scholar

Nasdala, L., Smith, D.C., Kaindl, R., and Ziemann, M. (2004) Raman spectroscopy: analytical perspectives in mineralogical research. In A. Beran and E. Libowitzky, Eds., Spectroscopic Methods in Mineralogy, EMU Notes in Mineralogy, 6, 281–343.10.1180/EMU-notes.6.7Suche in Google Scholar

Paterson, M.S. (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bulletin Minéralogique, 105, 20–29.10.3406/bulmi.1982.7582Suche in Google Scholar

Redfern, S.A.T., Bell, A.M.T., Henderson, M.B., and Schofield, P.F. (1995) Rietveld study of the structural phase transition in the sanmartinite (ZnWO4)-cuproscheelite (CuWO4) solid solution. European Journal of Mineralogy, 7, 1019–1028.10.1127/ejm/7/4/1019Suche in Google Scholar

Rossman, G.R. (2006) Analytical methods for measuring water in nominally anhydrous minerals. Reviews in Mineralogy and Geochemistry, 62, 1–28.10.1515/9781501509476-005Suche in Google Scholar

Rudnick, R.L., and Gao, S. (2004) Composition of the continental crust. In R.L. Rudnick, Ed., The Crust, 3, 1–64. Treatise on Geochemistry, Elsevier.10.1016/B0-08-043751-6/03016-4Suche in Google Scholar

Ruschel, K., Nasdala, L., Kronz, A., Hanchar, J.M., Többens, D.M., Škoda, R., Finger, F., Möller, A. (2012) A Raman spectroscopic study on the structural disorder of monazite–(Ce). Mineralogy Petrology, 105, 41–55.10.1007/s00710-012-0197-7Suche in Google Scholar

Ryskin, Y. I. (1974) The vibrations of protons in minerals: hydroxyl, water and ammonium. In V.C. Farmer, Ed., The Infrared Spectra of Minerals. Mineralogical Society, London, 137–181.10.1180/mono-4.9Suche in Google Scholar

Talla, D., Beran, A., Škoda, R., and Losos, Z. (2011) On the presence of OH defects in the zircon-type phosphate mineral xenotime, (Y, REE)PO4. American Mineralogist, 96, 1799–1808.10.2138/am.2011.3757Suche in Google Scholar

Talla, D., Wildner, M., Beran, A., Škoda, R., and Losos, Z. (2013) On the presence of hydrous defects in differently coloured wulfenites (PbMoO4): an infrared and optical spectroscopic study. Physics and Chemistry of Minerals, 40, 757–769.10.1007/s00269-013-0610-8Suche in Google Scholar

Wei, W., Hu, R., Bi, X., Peng, J., Su, W., Song, S., and Shi, S. (2012) Infrared microthermometric and stable isotopic study of fluid inclusions in wolframite at the Xihuashan tungsten deposit, Jiangxi province, China. Mineralium Deposita, 47, 589–605.10.1007/s00126-011-0377-0Suche in Google Scholar

Weitzel, H. (1976) Kristallstrukturverfeinerung von Wolframiten und Columbiten. Zeitschrift für Kristallographie, 144, 238–258 (in German).10.1524/zkri.1976.144.1-6.238Suche in Google Scholar

Received: 2015-12-24
Accepted: 2016-11-17
Published Online: 2017-4-3
Published in Print: 2017-4-1

© 2017 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Review: Minerals in the Human Body
  2. Mineral precipitation and dissolution in the kidney
  3. Special Collection: Nanominerals and Mineral Nanoparticles
  4. Luogufengite: A new nano-mineral of Fe2O3 polymorph with giant coercive field
  5. Special Collection: Apatite: A Common Mineral, Uncommonly Versatile
  6. Column anion arrangements in chemically zoned ternary chlorapatite and fluorapatite from Kurokura, Japan
  7. Special Collection: Apatite: A Common Mineral, Uncommonly Versatile
  8. Magmatic graphite inclusions in Mn-Fe-rich fluorapatite of perphosphorus granites (the Belvís pluton, Variscan Iberian Belt)
  9. Special Collection: Apatite: A Common Mineral, Uncommonly Versatile
  10. Barometric constraints based on apatite inclusions in garnet
  11. Special collection: Olivine
  12. A comparison of olivine-melt thermometers based on DMg and DNi: The effects of melt composition, temperature, and pressure with applications to MORBs and hydrous arc basalts
  13. Special collection: Dynamics of magmatic processes
  14. Water transfer during magma mixing events: Insights into crystal mush rejuvenation and melt extraction processes
  15. Special collection: Rates and depths of magma ascent on earth
  16. A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones
  17. The S content of silicate melts at sulfide saturation: New experiments and a model incorporating the effects of sulfide composition
  18. Bond valence and bond energy
  19. Fluvial transport of impact evidence from cratonic interior to passive margin: Vredefort-derived shocked zircon on the Atlantic coast of South Africa
  20. Iron partitioning in natural lower-mantle minerals: Toward a chemically heterogeneous lower mantle
  21. Identifying biogenic silica: Mudrock micro-fabric explored through charge contrast imaging
  22. Compressibility and high-pressure structural behavior of Mg2Fe2O5
  23. Thermo-elastic behavior of grossular garnet at high pressures and temperatures
  24. Experimental constraints on the stability of baddeleyite and zircon in carbonate- and silicate-carbonate melts
  25. Polarized FTIR spectroscopic examination on hydroxylation in the minerals of the wolframite group, (Fe,Mn,Mg)[W,(Nb,Ta)][O,(OH)]4
  26. Tourmaline-rich features in the Heemskirk and Pieman Heads granites from western Tasmania, Australia: Characteristics, origins, and implications for tin mineralization
  27. Ca L2,3-edge near edge X-ray absorption fine structure of tricalcium aluminate, gypsum, and calcium (sulfo)aluminate hydrates
  28. Fluorwavellite, Al3(PO4)2(OH)2F·5H2O, the fluorine analog of wavellite
  29. New Mineral Names
  30. Book Review
  31. Book Review: Geochemical Rate Models: An Introduction to Geochemical Kinetics
  32. Book Review
  33. Book Review: Oxygen: A Four Billion Year History
  34. Erratum
  35. Calibration of Fe XANES for high-precision determination of Fe oxidation state in glasses: Comparison of new and existing results obtained at different synchrotron radiation sources
Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2017-5664/html
Button zum nach oben scrollen