Startseite Carbon mineral ecology: Predicting the undiscovered minerals of carbon
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Carbon mineral ecology: Predicting the undiscovered minerals of carbon

  • Robert M. Hazen EMAIL logo , Daniel R. Hummer , Grethe Hystad , Robert T. Downs und Joshua J. Golden
Veröffentlicht/Copyright: 5. April 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Studies in mineral ecology exploit mineralogical databases to document diversity-distribution relationships of minerals—relationships that are integral to characterizing “Earth-like” planets. As carbon is the most crucial element to life on Earth, as well as one of the defining constituents of a planet’s near-surface mineralogy, we focus here on the diversity and distribution of carbon-bearing minerals. We applied a Large Number of Rare Events (LNRE) model to the 403 known minerals of carbon, using 82 922 mineral species/locality data tabulated in http://mindat.org (as of 1 January 2015). We find that all carbon-bearing minerals, as well as subsets containing C with O, H, Ca, or Na, conform to LNRE distributions.

Our model predicts that at least 548 C minerals exist on Earth today, indicating that at least 145 carbon-bearing mineral species have yet to be discovered. Furthermore, by analyzing subsets of the most common additional elements in carbon-bearing minerals (i.e., 378 C + O species; 282 C + H species; 133 C + Ca species; and 100 C + Na species), we predict that approximately 129 of these missing carbon minerals contain oxygen, 118 contain hydrogen, 52 contain calcium, and more than 60 contain sodium. The majority of these as yet undescribed minerals are predicted to be hydrous carbonates, many of which may have been overlooked because they are colorless, poorly crystalized, and/or water-soluble.

We tabulate 432 chemical formulas of plausible as yet undiscovered carbon minerals, some of which will be natural examples of known synthetic compounds, including carbides such as calcium carbide (CaC2), crystalline hydrocarbons such as pyrene (C16H10), and numerous oxalates, formates, anhydrous carbonates, and hydrous carbonates. Many other missing carbon minerals will be isomorphs of known carbon minerals, notably of the more than 100 different hydrous carbonate structures. Surveys of mineral localities with the greatest diversity of carbon minerals, coupled with information on varied C mineral occurrences, point to promising locations for the discovery of as yet undescribed minerals.

Acknowledgments

We are grateful to Jesse Ausubel, Edward Grew, Shaun Hardy, Margaret Hazen, John Hughes, Marcus Origlieri, Charles Prewitt, Craig Schiffries, Matthew Scott, and an anonymous reviewer for valuable comments and suggestions. This work was supported by the Deep Carbon Observatory and the Alfred P. Sloan Foundation, with additional contributions from the W.M. Keck Foundation, an anonymous private foundation, and the Carnegie Institution for Science.

References Cited

Allwood, A.C., Walter, M.R., Kamber, B.S., Marshall, C.P., and Burch, I.W. (2006) Stromatolite reef from the Early Archaean era of Australia. Nature, 441, 714–718.10.1038/nature04764Suche in Google Scholar

Anthony, J.W., Bideaux, R.A., Bladh, K.W., and Nichols, M.C. (2003) Handbook of Mineralogy. Volume V. Borates, Carbonates, Sulfates. Mineral Data Publishing, Tucson, Arizona.Suche in Google Scholar

Baayen, R.H. (2001) Word Frequency Distributions. Kluwer, Dordrecht.10.1007/978-94-010-0844-0Suche in Google Scholar

Bond, J.C., O’Brien, D.P., and Lauretta, D.S. (2010) The compositional diversity of extrasolar planets. I. In situ simulations. Astrophysical Journal, 715, 1050–1070.10.1088/0004-637X/715/2/1050Suche in Google Scholar

Bowell, R.J. (2014) Hydrogeochemistry of the Tsumeb deposit: Implications for arsenate mineral stability. Reviews in Mineralogy and Geochemistry, 79, 589–628.10.2138/rmg.2014.79.14Suche in Google Scholar

Brearley, A.J. and Jones, R.H. (1998) Chondrite meteorites. Reviews in Mineralogy and Geochemistry, 36, 3.1–3.398.Suche in Google Scholar

Bryant, D.G. and Metz, H.E. (1966) Geology and ore deposits of the Warren mining district. In S.R. Titley and C.L. Hicks, Eds., Geology of the Porphyry Copper Deposits, Southwestern North America, pp. 189–203. University of Arizona Press, Tucson.Suche in Google Scholar

Bucher, K., Zhu, Y., and Stober, I. (2009) Groundwater in fractured crystalline rocks, the Clara Mine, Black Forest (Germany). International Journal of Earth Sciences, 98, 1727–1739.10.1007/s00531-008-0328-xSuche in Google Scholar

Canfield, D. (2014) Oxygen: A Four-Billion Year History. Princeton University Press, New Jersey.Suche in Google Scholar

Christy, A.G. (2015) Causes of anomalous mineralogical diversity in the Periodic Table. Mineralogical Magazine, 79, 33–49.10.1180/minmag.2015.079.1.04Suche in Google Scholar

Cleaves, H.J. II, Scott, A.M., Hill, F.C., Leszczynski, J., Sahai, N., and Hazen, R.M. (2012) Mineral-organic interfacial processes: potential roles in the origins of life. Chemical Society Reviews, 41, 5502–5525.10.1039/c2cs35112aSuche in Google Scholar

Currie, K.L., Eby, G.N., and Gitting, F. (1986) The petrology of Mont St-Hilaire complex, southern Quebec: An alkaline gabbro-peralkaline syentite association. Lithos, 19, 65–81.10.1016/0024-4937(86)90016-2Suche in Google Scholar

Delgado Mena, E., Israelian, G., Gonzalez Hernandez, J.I., Bond, J.C., Santos, N.C., Udry, S., and Mayor, M. (2010) Chemical clues on the formation of planetary systems: C/O versus Mg/Si for HARPS GTO sample. Astrophysical Journal, 725, 2349, doi: 10.1088/0004-637X/725/2/2349.10.1088/0004-637X/725/2/2349Suche in Google Scholar

Dove, P.M. (2010) The rise of skeletal biominerals. Elements, 10, 37–42.10.2113/gselements.6.1.37Suche in Google Scholar

Dove, P.M., De Yoreo, J.J., and Weiner, S. (2003) Biomineralization. Reviews in Mineralogy and Geochemistry, 54, 395.10.1515/9781501509346Suche in Google Scholar

Downs, R.T. (2006) The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan. O03-13.Suche in Google Scholar

Dunn, P.J. (1991) Rare minerals of the Kombat Mine. Mineralogical Record, 22, 421–425.Suche in Google Scholar

Everest, D.A. (1973) Beryllium. In J.C. Bailar, H.J. Emeléus, R. Nyholm, and A.F. Trotman-Dickenson, Eds., Comprehensive Inorganic Chemistry. Pergamon, Oxford.Suche in Google Scholar

Evert, S. and Baroni, M. (2008) Statistical Models for Word Frequency Distributions, Package zipfR.10.3115/1557769.1557780Suche in Google Scholar

Golden, J., McMillan, M., Downs, R.T., Hystad, G., Stein, H.J., Zimmerman, A., Sverjensky, D.A., Armstrong, J., and Hazen, R.M. (2013) Rhenium variations in molybdenite (MoS2): Evidence for progressive subsurface oxidation. Earth and Planetary Science Letters, 366, 1–5.10.1016/j.epsl.2013.01.034Suche in Google Scholar

Grew, E.S., and Hazen, R.M. (2014) Beryllium mineral evolution. American Mineralogist, 99, 999–1021.10.2138/am.2014.4675Suche in Google Scholar

Grotzinger, J.P., and Knoll, A.H. (1999) Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks. Annual Review of Earth and Planetary Sciences, 27, 313–358.10.1146/annurev.earth.27.1.313Suche in Google Scholar PubMed

Hazen, R.M. (2006) Mineral surfaces and the prebiotic selection and organization of biomolecules (Presidential Address to the Mineralogical Society of America). American Mineralogist, 91, 1715–1729.10.2138/am.2006.2289Suche in Google Scholar

——— (2013) Paleomineralogy of the Hadean Eon: A preliminary list. American Journal of Science, 313, 807–843.10.2475/09.2013.01Suche in Google Scholar

——— (2014) Data-driven abductive discovery in mineralogy. American Mineralogist, 99, 2165–2170.10.2138/am-2014-4895Suche in Google Scholar

Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J., McCoy, T., Sverjensky, D., and Yang, H. (2008) Mineral evolution. American Mineralogist, 93, 1693–1720.10.2138/am.2008.2955Suche in Google Scholar

Hazen, R.M., Golden, J., Downs, R.T., Hystad, G., Grew, E.S., Azzolini, D., and Sverjensky, D.A. (2012) Mercury (Hg) mineral evolution: A mineralogical record of supercontinent assembly, changing ocean geochemistry, and the emerging terrestrial biosphere. American Mineralogist, 97, 1013–1042.10.2138/am.2012.3922Suche in Google Scholar

Hazen, R.M., Downs, R.T., Jones, A.P., and Kah, L. (2013a) The mineralogy and crystal chemistry of carbon. Reviews in Mineralogy and Geochemistry, 75, 7–46.10.1515/9781501508318-004Suche in Google Scholar

Hazen, R.M., Downs, R.T., Kah, L., and Sverjensky, D.A. (2013b) Carbon mineral evolution. Reviews in Mineralogy and Geochemistry, 75, 79–107.10.1515/9781501508318-006Suche in Google Scholar

Hazen, R.M., Sverjensky, D.A., Azzolini, D., Bish, D.L., Elmore, S.C., Hinnov, L., and Milliken, R.E. (2013c) Clay mineral evolution. American Mineralogist, 98, 2007–2029.10.2138/am.2013.4425Suche in Google Scholar

Hazen, R.M., Grew, E.S., Downs, R.T., Golden, J., and Hystad, G. (2015a) Mineral ecology: Chance and necessity in the mineral diversity of terrestrial planets. Canadian Mineralogist, 53, 295–324, DOI: 10.3749/canmin.1400086.10.3749/canmin.1400086Suche in Google Scholar

Hazen, R.M., Hystad, G., Downs, R.T., Golden, J., Pires, A., and Grew, E.S. (2015b) Earth’s “missing” minerals. American Mineralogist 100, 2344–2347. DOI: 10.2138/am-2015–5417.10.2138/am-2015-5417Suche in Google Scholar

Higgins, M.D., and Smith, D.G.W. (2010) A census of mineral species in 2010. Elements, 6, 346.Suche in Google Scholar

Holtstam, D., and Langhof, J. (Eds.) (1999) Långban: The Mines, their Minerals, Geology and Explorers, p. 216. Swedish Museum of Natural History and Raster Förlag. And Christian Weise Verlag, Munich, Germany.Suche in Google Scholar

Hummer, D.R., Hazen, R.M., Golden, J.J., and Downs, R.T. (2015) Constraints on the mineral evolution of terrestrial planets using statistical correlations and anti-correlations among the mineral-forming elements. 2015 Fall Meeting, AGU, San Francisco, CA, 14–18 Dec., Abstract V51C-3040.Suche in Google Scholar

Hystad, G., Downs, R.T., and Hazen, R.M. (2015a) Mineral frequency distribution data conform to a LNRE model: Prediction of Earth’s “missing” minerals. Mathematical Geosciences, 47, 647–661.10.1007/s11004-015-9600-3Suche in Google Scholar

Hystad, G., Downs, R.T., Grew, E.S., and Hazen, R.M. (2015b) Statistical analysis of mineral diversity and distribution: Earth’s mineralogy is unique. Earth and Planetary Science Letters, 426, 154–157.10.1016/j.epsl.2015.06.028Suche in Google Scholar

Innes, J., and Chaplin, R.C. (1986) Ore bodies of the Kombat mine, South West Africa/Namibia. In C.R. Anhaeusser and S. Maske, Editors, Mineral Deposits of Southern Africa. Johannesberg, Republic of South Africa: Geological Survey of South Africa, pp. 1789–1805.Suche in Google Scholar

Jenkins, J.J., Twicken, J.D., Batalha, N.M., Caldwell, D.A., Cochran, W.D., Endl, M., Latham, D.W., Esquerdo, G.A., Seader, S., Bieryla, A., and others. (2015) Discovery and validation of Kepler-452b: A 1.6 R super earth exoplanet in the habitable zone of a G2 star. Astronomical Journal, 150, 56, DOI: 10.1088/0004-6256/150/2/56.10.1088/0004-6256/150/2/56Suche in Google Scholar

Jonsson, E., and Broman, C. (2002) Fluid inclusions in late-stage Pb-Mn-As-Sb mineral assemblages in the Långban deposit, Bergslagen, Sweden. Canadian Mineralogist, 40, 47–65.10.2113/gscanmin.40.1.47Suche in Google Scholar

Jones, A.P., Genge, M., and Carmody, L. (2013) Carbonate melts and carbonatites. Reviews in Mineralogy and Geochemistry, 75, 289–322.10.1515/9781501508318-012Suche in Google Scholar

Kadish, K., Smith, K.M., and Guilard, R. (2010) Handbook of Porphyrin Science, volumes 1–10. World Scientific, Singapore.10.1142/7752-vol10Suche in Google Scholar

Larimer, J.W., and Bartholomay, M. (1979) The role of carbon and oxygen in cosmic gases: Some applications to the chemistry and mineralogy of enstatite chondrites. Geochimica et Cosmochimica Acta, 43, 1455–1466.10.1016/0016-7037(79)90140-6Suche in Google Scholar

Larsen, L.M., and Pedersen, A.K. (2009) Petrology of the Paleocene picrites and flood basalts in Disko and Nuussuaq, West Greenland. Journal of Petrology, 50, 1667–1711.10.1093/petrology/egp048Suche in Google Scholar

Lee, M.R., Torney, C., and Owen, A.W. (2007) Magnesium-rich intralensar structures in schizochroal trilobites eyes. Palaeontology, 50, 1031–1037.10.1111/j.1475-4983.2007.00710.xSuche in Google Scholar

Lepot, K., Benzerara, K., Brown, G.E., and Philippot, P. (2008) Microbially influenced formation of 2,724-million-year-old stromatolites. Nature Geoscience, 1, 1–4.10.1038/ngeo107Suche in Google Scholar

London, D. (2008) Pegmatites. Canadian Mineralogist Special Publication, 10, 347.Suche in Google Scholar

Lyons, T.W., Peinhard, C.T., and Planavsky, N.J. (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature, 506, 307–314.10.1038/nature13068Suche in Google Scholar

Madhusudhan, N., Harrington, J., Stevenson, K.B., Nymeyer, S., Campo, C.J., Wheatley, P.J., Deming, D., Blecic, J., Hardy, R.A., Lust, N.B., Anderson, D.R., Collier-Cameron, A., Britt, C.B.T., Bowman, W.C., Hebb, L., Hellier, C., Maxted, P.F.L., Pollacco, D., and West, R.G. (2011) A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b. Nature, 469, 64–67.10.1038/nature09602Suche in Google Scholar

Maiolino, R., Carniani, S., Fontana, A., Vallini, L., Pentericci, L., Ferrara, A., Vanzella, E., Grazian, A., Gallerani, S., Castellano, M., Cristiani, S., Brammer, G., Santini, P., Wagg, J., and Williams, R. (2015) The assembly of “normal” galaxies at z ~ 7 probed by ALMA. Monthly Notices of the Royal Astronomical Society, 452, 54–68.10.1093/mnras/stv1194Suche in Google Scholar

Mann, S. (2001) Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. Oxford University Press, U.K.Suche in Google Scholar

Mason, G.M., Trudell, L.G., and Branthaver, J.F. (1989) Review of the stratigraphic distribution and diagenetic history of abelsonite. Organic Geochemistry, 14, 585–594.10.1016/0146-6380(89)90038-7Suche in Google Scholar

McDonough, W.F., and Sun, S.S. (1995) The composition of the Earth. Chemical Geology, 120, 223–253.10.1016/S0074-6142(01)80077-2Suche in Google Scholar

Melson, W.G., and Switzer, G. (1966) Plagioclase-spinel-graphite xenoliths in metallic iron-bearing basalts, Disko Island, Greenland. American Mineralogist, 51, 664–676.Suche in Google Scholar

Milton, C., Dwornik, E.J., Estep-Barnes, P.A., Finkelman, R.B., Pabst, A., and Palmer, S. (1978) Abelsonite, nickel porphyrin, a new mineral from the Green River Formation, Utah. American Mineralogist, 63, 930–937.Suche in Google Scholar

Morehead, J.T., and de Chalmot, G. (1896) The manufacture of calcium carbide. Journal of the American Chemical Society, 18, 311–331.10.1021/ja02090a001Suche in Google Scholar

Nissen, P.E. (2013) The carbon to oxygen ratio in stars with planets. Astronomy & Astrophysics, 552, 73–83.10.1051/0004-6361/201321234Suche in Google Scholar

Ondrus, P., Veselovsky, F., Gabasová, A., Hlousek, J., and Srein, V. (2003a) Geology and hydrothermal vein system of the Jáchymov (Joachimsthal) ore district. Journal of the Czech Geological Society, 48, 3–18.Suche in Google Scholar

Ondrus, P., Veselovsky, F., Gabasová, A., Drábek, M., Dobes, P., Maly, K., Hlousek, J., and Sejkora, J. (2003b) Ore-forming processes and mineral paragenesis of the Jáchymov ore district. Journal of the Czech Geological Society, 48, 157–192.Suche in Google Scholar

Palache, C. (1937) The minerals of Franklin and Sterling Hill, Sussex County, New Jersey. United States Geological Survey Professional Paper, 180, 135 p.Suche in Google Scholar

Pfaff, K., Staude, S., and Markl, G. (2012) On the origin of sellaite (MgF2)-rich deposits in Mg-poor environments. American Mineralogist, 97, 1987–1997.10.2138/am.2012.4113Suche in Google Scholar

Quintana, E.V., Barclay, T., Raymond, S.N., Rowe, J.F., Bolmont, E., Caldwell, D.A. Howell, S.B., Kane, S.R., Huber, D., Crepp, J.R., and others. (2014)An Earth-sized planet in the habitable zone of a cool star. Science, 344, 277–280.10.1126/science.1249403Suche in Google Scholar PubMed

Ransome, F.L. (1904) The geology and ore deposits of the Bisbee Quadrangle, Arizona.United States Geological Survey Professional Paper, 21, 168 p.10.3133/pp21Suche in Google Scholar

Reeder, R.J. (1983) Crystal chemistry of the rhombohedral carbonates. Reviews in Mineralogy, 11, 1–47.Suche in Google Scholar

Runnegar, B. (1987) The evolution of mineral skeletons. In R.E. Crick, Ed., Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals. Plenum, New York, pp. 75–94.Suche in Google Scholar

Schilling, J., Marks, M.A.W., Wenzel, T., Vennemann, T., Horváth, L., Tarasoff, P., Jacob, D.E., and Markl, G. (2011) The magmatic to hydrothermal evolution of the intrusive Mont Saint-Hilaire complex: Insights into the late-stage evolution of peralkaline rocks. Journal of Petrology, 59, 2147–2185.10.1093/petrology/egr042Suche in Google Scholar

Sleep, N.H., Zahnle, K.J., and Lupu, R.E. (2014) Terrestrial aftermath of the Moonforming impact. Philosophical Transactions A, 372(2024), 20130172, doi: 10.1098/rsta.2013.0172.10.1098/rsta.2013.0172Suche in Google Scholar PubMed

Speer, J.A. (1983) Crystal chemistry and phases relations of orthorhombic carbonates. Reviews in Mineralogy, 11, 145–190.10.1515/9781501508134-009Suche in Google Scholar

Steacy, H.R., and Jambor, J.L. (1969) Nature, distribution and content of zirconium and niobium in a silico-carbonatite sill at St.-Michel, Montreal Island, Quebec. Geological Survey of Canada, Paper, 69-20, 1–7.Suche in Google Scholar

Sumner, D.W. (1997) Carbonate precipitation and oxygen stratification in late Archean seawater as deduced from facies and stratigraphy of the Gamohaan and Frisco Formations, Transvaal Supergroup, South Africa. American Journal of Science, 297, 455–487.10.2475/ajs.297.5.455Suche in Google Scholar

Sverjensky, D.A., and Lee, N. (2010) The Great Oxidation Event and mineral diversification. Elements, 6, 31–36.10.2113/gselements.6.1.31Suche in Google Scholar

Tarassoff, P., Horváth, L., and Pfenninger-Horváth, E. (2006) The Francon Quarry, Montréal, Québec. Mineralogical Record, 37, 5–60.Suche in Google Scholar

Torres, G., Kipping, D.M., Fressin, F., Caldwell, D.A., Twicken, J.D., Ballard, S., Batalha, N.M., Bryson, S.T., Ciardi, D.R., Henze, C.E., and others. (2015) Validation of twelve small Kepler transiting planets in the habitable zone. Astrophysical Journal, 800, 99, doi: 10.1088/0004-637X/800/2/99.10.1088/0004-637X/800/2/99Suche in Google Scholar

Unterborn, C.T., Kabbes, J.E., Pigott, J.S., Reaman, D.M., and Panero, W.R. (2014) The role of carbon in extrasolar planetary geodynamics and habitability. The Astrophysical Journal, 793.124 (10 pp), doi: 10.1088/0004-637X/793/2/124.10.1088/0004-637X/793/2/124Suche in Google Scholar

Walter, M.R., Buick, R., and Dunlop, J.S.R. (1980) Stromatolites 3,400–3,500 Myrold from the North-Pole area, Western-Australia. Nature, 284, 443–445.10.1038/284443a0Suche in Google Scholar

Warthmann, R., van Lith, Y., Vasconcelos, C., McKenzie, J.A., and Karpoff, A.M. (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology, 28, 1091–1094.10.1130/0091-7613(2000)28<1091:BIDPIA>2.0.CO;2Suche in Google Scholar

Wedepohl, K.H. (1995) The composition of the continental crust. Geochimica et Cosmochimica Acta, 59, 1217–1232.10.1180/minmag.1994.58A.2.234Suche in Google Scholar

Wilson, W.E. (Ed.) (1977) Tsumeb! The world’s greatest mineral locality. Mineralogical Record, 8, 130.Suche in Google Scholar

Yakovenchuk, V.N., Ivanyuk, G., Pakhomovsky, Y., and Men’shikov, Y. (2005) Khibiny. Laplandia Minerals and Mineralogical Society of Great Britain and Ireland, 468 p., LondonSuche in Google Scholar

Yaroshevsky, A.A., and Bulakh, A.G. (1994) The mineral composition of the Earth’s crust, mantle, meteorites, moon and planets. In A.S. Marfunin, Ed., Advanced Mineralogy, Volume 1: Composition, Structure, and Properties of Mineral Matter: Concepts, Results and Problems, pp. 27–36. Springer-Verlag, Berlin.10.1007/978-3-642-78523-8_3Suche in Google Scholar

Young, P.A., Desch, S.J., Anbar, A.D., Barnes, R., Hinkel, N.R., Kopparapu, R., Madhusudhan, N., Monga, N., Pagano, M.D., Riner, M.A., and others. (2014) Astrobiological stoichiometry. Astrobiology, 14, 603–626.10.1089/ast.2014.1143Suche in Google Scholar

Zaitsev, A.N., Yakovenchuk, V.N., Chao, G.Y., Gault, R.A., Subbotin, V.V., Pakhomosky, Y.A., and Bogdanova, A.N. (1996) Kukharenkoite-(Ce) Ba2Ce(CO3)3F, a new mineral from Kola Peninsula, Russia and Québec, Canada. European Journal of Mineralogy, 8, 1327–1336.10.1127/ejm/8/6/1327Suche in Google Scholar

Zaitsev, A.N., Wall, F., and Le Bas, M.J. (1998) Ree-Sr-Ba minerals from the Khibina carbonatites, Kola Peninsula, Russia: their mineralogy, paragenesis and evolution. Mineralogical Magazine, 62, 225–250.10.1180/002646198547594Suche in Google Scholar

Published Online: 2016-4-5
Published in Print: 2016-4-1

© 2016 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Research Article
  2. Glass structure, melt structure, and dynamics: Some concepts for petrology
  3. Research Article
  4. The validity of plagioclase-melt geothermometry for degassing-driven magma crystallization
  5. Research Article
  6. Outlooks in Earth and Planetary Materials: Chemistry and Mineralogy of Earth’s Mantle: A petrological assessment of diamond as a recorder of the mantle nitrogen cycle
  7. Research Article
  8. Special Collection: Advances in Ultrahigh-Pressure Metamorphism: Contrasting P-T paths within the Barchi-Kol UHP terrain (Kokchetav Complex): Implications for subduction and exhumation of continental crust
  9. Research Article
  10. Special Collection: New Advances in Subduction Zone Magma Genesis: Experimental formation of pyroxenite veins by reactions between olivine and Si, Al, Ca, Na, and Cl-rich fluids at 800 °C and 800 MPa: Implications for fluid metasomatism in the mantle wedge
  11. Review
  12. Special Collection: Olivine: Rates and styles of planetary cooling on Earth, Moon, Mars, and Vesta, using new models for oxygen fugacity, ferric-ferrous ratios, olivine-liquid Fe-Mg exchange, and mantle potential temperature
  13. Research Article
  14. Special Collection: Rates and Depths of Magma Ascent on Earth: Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes
  15. Research Article
  16. Special Collection: Rates and Depths of Magma Ascent on Earth: Degassing of Hydrous Trachytic Campi Flegrei and Phonolitic Vesuvius Melts: Experimental Limitations and Chances to Study Homogeneous Bubble Nucleation
  17. Research Article
  18. Special Collection: Water in Nominally Hydrous and Anhydrous Minerals: Crystal/melt partitioning of water and other volatiles during the near-solidus melting of mantle peridotite: Comparisons with non-volatile incompatible elements and implications for the generation of intraplate magmatism
  19. Research Article
  20. Carbon mineral ecology: Predicting the undiscovered minerals of carbon
  21. Research Article
  22. Chromium, vanadium, and titanium valence systematics in Solar System pyroxene as a recorder of oxygen fugacity, planetary provenance, and processes
  23. Research Article
  24. Iron-titanium oxyhydroxides as water carriers in the Earth’s deep mantle
  25. Research Article
  26. Radiation damage in biotite mica by accelerated α-particles: A synchrotron microfocus X-ray diffraction and X-ray absorption spectroscopy study
  27. Research Article
  28. Models for the estimation of Fe3+/Fetot ratio in terrestrial and extraterrestrial alkali- and iron-rich silicate glasses using Raman spectroscopy
  29. Research Article
  30. An advanced rotational rheometer system for extremely fluid liquids up to 1273 K and applications to alkali carbonate melts
  31. Research Article
  32. Experimental temperature cycling as a powerful tool to enlarge melt pools and crystals at magma storage conditions
  33. Research Article
  34. Exploring the potential of Raman spectroscopy for crystallochemical analyses of complex hydrous silicates: II. Tourmalines
  35. Research Article
  36. Crystal structure of a new compound, CuZnCl(OH)3, isostructural with botallackite
  37. Research Article
  38. Elastic wave velocities in polycrystalline Mg3Al2Si3O12-pyrope garnet to 24 GPa and 1300 K
  39. Research Article
  40. Presentation of the Mineralogical Society of America Award for 2015 to Nicholas J. Tosca
  41. Research Article
  42. Acceptance of the Mineralogical Society of America Award for 2015
  43. Research Article
  44. Presentation of the 2015 Roebling Medal of the Mineralogical Society of America to Rodney C. Ewing
  45. Research Article
  46. Acceptance of the 2015 Roebling Medal of the Mineralogical Society of America
  47. Research Article
  48. Presentation of the Distinguished Public Service Award of the Mineralogical Society of America for 2015 to J. Alexander Speer
  49. Research Article
  50. Acceptance of the 2015 Mineralogical Society of America Distinguished Public Service Award
  51. Research Article
  52. Presentation of the Dana Medal of the Mineralogical Society of America for 2016 to Patrick Cordier
  53. Research Article
  54. Acceptance of the Dana Medal of the Mineralogical Society of America for 2016
  55. Book Review
  56. New Mineral Names*
  57. Book Review
  58. Book Review
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am-2016-5546/html
Button zum nach oben scrollen