Startseite Naturwissenschaften Exploring the dynamics of halogen and hydrogen bonds in halogenated coumarins
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Exploring the dynamics of halogen and hydrogen bonds in halogenated coumarins

  • Mebin Varghese , Jisha Mary Thomas , Abdullah Y. Alzahrani und Renjith Thomas EMAIL logo
Veröffentlicht/Copyright: 15. Februar 2024

Abstract

Halogen bonds find application in supramolecular chemistry, DNA Holliday junction, drug design, organic catalysis and various other fields. Coumarin derivatives are high in demand due to their application in photochemotherapy, drugs and other cancer treatments. Halogenated coumarins are widely known for their biological activities. There exists a competition between the halogen bond and hydrogen bond in singly hydrated halogenated coumarins. The competition between hydrogen and halogen bonding interactions in 3-halogenated 4-hydroxyl coumarin [coumarin derivative; halogen, X = F (A), Cl (B), Br (C), I (D)] with water molecule in the corresponding binding regions C3–X and C2=O4 is studied. This study was conducted using PBE0 D3BJ with augmented correlation consistent basis set in order to include the diffuse functions. Improved findings for non-bonded distances and much more distinct intramolecular effects were obtained using BJ-damping. In the singly-hydrated systems, the water molecule forms a hydrogen bond with C2=O4 in all the halogenated molecules, whereas halogen bonding between the water oxygen and C2–X exists only in the case of X = Br (C) and I (D). The absence of a halogen-bonded structure in singly-hydrated chlorine and fluorine substituted coumarin derivative is therefore attributed to the competing hydrogen-bonding interaction with C2=O4. RDG scatter plot as well QTAIM analysis implied that halogen bond exists between water molecule and the coumarin derivative. Further, the most modern local energy decomposition (LED) analysis of intermolecular interaction was also studied using DLPNO-CCSD(T). Finally, ab initio molecular dynamics was also performed.


Corresponding author: Renjith Thomas, Department of Chemistry, St Berchmans College (Autonomous), Mahatma Gandhi University, Changanassery, Kerala 686101, India; and Centre for Theoretical and Computational Chemistry, Department of Chemistry, St Berchmans College (Autonomous), Mahatma Gandhi University, Changanassery, Kerala 686101, India, E-mail:

Acknowledgments

SEAGrid (http:www.seagrid.org) is acknowledged for computational resources and services for the selected results used in this publication.

  1. Ethical approval: Not applicable.

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. M. V.: Simulation, formal analysis, Revised manuscript writing J. M. T.: Analysis, writing draft, formal analysis, A. Y. A.: Analysis, writing revised draft, formal analysis, R. T.: Conceptualization, methodology, resources, supervision, writing.

  3. Competing interests: Authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: None declared.

References

1. Huebner, C. F., Link, K. P. Studies on 4-Hydroxycoumarin. VII. Reactions of 4-Hydroxycoumarin with Cationoid Reagents. J. Am. Chem. Soc. 1945, 67, 99–102; https://doi.org/10.1021/ja01217a035.Suche in Google Scholar

2. Games, D. E. The natural coumarins: occurrence, chemistry and biochemistry. Endeavour 1983, 7, 49. https://doi.org/10.1016/0160-9327(83)90060-1.Suche in Google Scholar

3. Behbahani, F. K., Samaei, S. Coumarins: Biology, Applications and Mode of Action; John Wiley & Sons: New York, 13, 2006.Suche in Google Scholar

4. Flores-Morales, V., Villasana-Ruíz, A. P., Garza-Veloz, I., González-Delgado, S., Martinez-Fierro, M. L. Therapeutic effects of coumarins with different substitution patterns. Molecules 2023, 28; https://doi.org/10.3390/molecules28052413.Suche in Google Scholar PubMed PubMed Central

5. Noureddine, O., Issaoui, N., Gatfaoui, S., Al-Dossary, O., Marouani, H. Quantum chemical calculations, spectroscopic properties and molecular docking studies of a novel piperazine derivative. J. King Saud Univ. Sci. 2021, 33, 101283. https://doi.org/10.1016/j.jksus.2020.101283.Suche in Google Scholar

6. Jumabaev, A., Holikulov, U., Hushvaktov, H., Issaoui, N., Absanov, A. Intermolecular interactions in ethanol solution of OABA: Raman, FTIR, DFT, M062X, MEP, NBO, FMO, AIM, NCI, RDG analysis. J. Mol. Liq. 2023, 377, 121552. https://doi.org/10.1016/j.molliq.2023.121552.Suche in Google Scholar

7. Agwupuye, J. A., Louis, H., Unimuke, T. O., David, P., Ubana, E. I., Moshood, Y. L. Electronic structure investigation of the stability, reactivity, NBO analysis, thermodynamics, and the nature of the interactions in methyl-substituted imidazolium-based ionic liquids. J. Mol. Liq. 2021, 337, 116458. https://doi.org/10.1016/j.molliq.2021.116458.Suche in Google Scholar

8. Nkoe, P., Manicum, A.-L. E., Louis, H., Malan, F. P., Nzondomyo, W. J., Chukwuemeka, K., Sithole, S. A., Imojara, A., Chima, C. M., Agwamba, E. C., Unimuke, T. O. Influence of solvation on the spectral, molecular structure, and antileukemic activity of 1-benzyl-3-hydroxy-2-methylpyridin-4(1h)-one. J. Mol. Liq. 2023, 370, 121045. https://doi.org/10.1016/j.molliq.2022.121045.Suche in Google Scholar

9. Thomas, J. M., Thomas, R. Study of non-covalent interactions present in the tapinarof–ethanol system with special emphasis on hydrogen-bonding interactions. J. Phys. Chem. B 2023, 127, 5933–5940. https://doi.org/10.1021/acs.jpcb.3c03152.Suche in Google Scholar PubMed

10. Maria Julie, M., Prabhu, T., Elamuruguporchelvi, E., Asif, F. B., Muthu, S., Irfan, A. Structural (monomer and dimer), wavefunctional, NCI analysis in aqueous phase, electronic and excited state properties in different solvent atmosphere of 3-{(E)-[(3,4-dichlorophenyl)imino]methyl} benzene-1,2-diol. J. Mol. Liq. 2021, 336, 116335. https://doi.org/10.1016/j.molliq.2021.116335.Suche in Google Scholar

11. Liu, X., Cole, J. M., Low, K. S. Solvent effects on the UV–Vis absorption and emission of optoelectronic coumarins: a comparison of three empirical solvatochromic models. J. Phys. Chem. C 2013, 117, 14731–14741. https://doi.org/10.1021/jp310397z.Suche in Google Scholar

12. Abbas, G., Irfan, A., Ahmed, I., Al-Zeidaneen, F. K., Muthu, S., Fuhr, O., Thomas, R. Synthesis and investigation of anti-COVID19 ability of ferrocene schiff base derivatives by quantum chemical and molecular docking. J. Mol. Struct. 2022, 1253; https://doi.org/10.1016/j.molstruc.2021.132242.Suche in Google Scholar PubMed PubMed Central

13. Muthu, S., Ramachandran, G. Spectroscopic studies (FTIR, FT-Raman and UV–Visible), normal coordinate analysis, NBO analysis, first order hyper polarizability, HOMO and LUMO analysis of (1R)-N-(prop-2-yn-1-yl)-2,3-dihydro-1h-inden-1-amine molecule by ab initio HF and density function. Spectrochim. Acta Mol. Biomol. Spectrosc. 2014, 121, 394–403. https://doi.org/10.1016/j.saa.2013.10.093.Suche in Google Scholar PubMed

14. Muthu, S., Elamurugu Porchelvi, E., Karabacak, M., Asiri, A. M., Swathi, S. S. Synthesis, structure, spectroscopic studies (FT-IR, FT-Raman and UV), normal coordinate, NBO and NLO analysis of salicylaldehyde P-chlorophenylthiosemicarbazone. J. Mol. Struct. 2015, 1081, 400–412. https://doi.org/10.1016/j.molstruc.2014.10.024.Suche in Google Scholar

15. Thomas, R., Pooventhiran, T., El-Bahy, S. M., El Azab, I. H., Mersal, G. A. M., Ibrahim, M. M., El-Bahy, Z. M. Evidence of significant non-covalent interactions in the solution of levetiracetam in water and methanol. J. Mol. Liq. 2022, 359; https://doi.org/10.1016/j.molliq.2022.119289.Suche in Google Scholar

16. Pooventhiran, T., Thomas, R. Hydrogen bonds between valsartan and solvents (water and methanol): evidences for solvation dynamics using local energy decomposition and abinitio molecular dynamics analysis. J. Mol. Liq. 2022, 354; https://doi.org/10.1016/j.molliq.2022.118856.Suche in Google Scholar

17. Pooventhiran, T., Yahya, A., Alzahrani, A., Rajimon, K. J., Thomas, R. Solvent interaction and dynamics of neurotransmitters L-aspartic acid and L-glutamic acid with water and ethanol. J. Mol. Struct. 2022, 1273, 134347. https://doi.org/10.1016/j.molstruc.2022.134347.Suche in Google Scholar

18. Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G., Terraneo, G. The halogen bond. Chem. Rev. 2016, 116, 2478–2601. https://doi.org/10.1021/acs.chemrev.5b00484.Suche in Google Scholar PubMed PubMed Central

19. Gilday, L. C., Robinson, S. W., Barendt, T. A., Langton, M. J., Mullaney, B. R., Beer, P. D. Halogen bonding in supramolecular chemistry. Chem. Rev. 2015, 115, 7118–7195. https://doi.org/10.1021/cr500674c.Suche in Google Scholar PubMed

20. Brammer, L., Mínguez Espallargas, G., Libri, S. Combining metals with halogen bonds. Cryst. Eng. Comm. 2008, 10, 1712–1727. https://doi.org/10.1039/B812927D.Suche in Google Scholar

21. Rissanen, K. Halogen bonded supramolecular complexes and networks. CrystEngComm. 2008, 10, 1107–1113. https://doi.org/10.1039/B803329N.Suche in Google Scholar

22. Zordan, F., Brammer, L., Sherwood, P. Supramolecular chemistry of halogens: complementary features of inorganic (M–X) and organic (C–X‘) halogens applied to M–X···X‘–C halogen bond formation. J. Am. Chem. Soc. 2005, 127, 5979–5989. https://doi.org/10.1021/ja0435182.Suche in Google Scholar PubMed

23. Aakeröy, C. B., Baldrighi, M., Desper, J., Metrangolo, P., Resnati, G. Supramolecular hierarchy among halogen-bond donors. Chem. Eur. J. 2013, 19, 16240–16247. https://doi.org/10.1002/chem.201302162.Suche in Google Scholar PubMed

24. Meazza, L., Foster, J. A., Fucke, K., Metrangolo, P., Resnati, G., Steed, J. W. Halogen-bonding-triggered supramolecular gel formation. Nat. Chem. 2013, 5, 42–47. https://doi.org/10.1038/nchem.1496.Suche in Google Scholar PubMed

25. Scholfield, M. R., Vander Zanden, C. M., Carter, M., Ho, P. S. Halogen bonding (X-bonding): a biological perspective. Protein Sci. 2013, 22, 139–152. https://doi.org/10.1002/pro.2201.Suche in Google Scholar PubMed PubMed Central

26. Langton, M. J., Robinson, S. W., Marques, I., Félix, V., Beer, P. D. Halogen bonding in water results in enhanced anion recognition in acyclic and rotaxane hosts. Nat. Chem. 2014, 6, 1039–1043. https://doi.org/10.1038/nchem.2111.Suche in Google Scholar PubMed

27. Jentzsch, A. V., Emery, D., Mareda, J., Nayak, S. K., Metrangolo, P., Resnati, G., Sakai, N., Matile, S. Transmembrane anion transport mediated by halogen-bond donors. Nat. Commun. 2012, 3, 905. https://doi.org/10.1038/ncomms1902.Suche in Google Scholar PubMed

28. Kniep, F., Jungbauer, S. H., Zhang, Q., Walter, S. M., Schindler, S., Schnapperelle, I., Herdtweck, E., Huber, S. M. Organocatalysis by neutral multidentate halogen-bond donors. Angew. Chem. Int. Ed. 2013, 52, 7028–7032. https://doi.org/10.1002/anie.201301351.Suche in Google Scholar PubMed

29. Priimagi, A., Cavallo, G., Metrangolo, P., Resnati, G. The halogen bond in the design of functional supramolecular materials: recent advances. Acc. Chem. Res. 2013, 46, 2686–2695. https://doi.org/10.1021/ar400103r.Suche in Google Scholar PubMed PubMed Central

30. Shirman, T., Kaminker, R., Freeman, D., van der Boom, M. E. Halogen-bonding mediated stepwise assembly of gold nanoparticles onto planar surfaces. ACS Nano 2011, 5, 6553–6563. https://doi.org/10.1021/nn201923q.Suche in Google Scholar PubMed

31. Wolters, L. P., Bickelhaupt, F. M. Halogen bonding versus hydrogen bonding: a molecular orbital perspective. ChemistryOpen 2012, 1, 96–105. https://doi.org/10.1002/open.201100015.Suche in Google Scholar PubMed PubMed Central

32. Aakeröy, C. B., Fasulo, M., Schultheiss, N., Desper, J., Moore, C. Structural competition between hydrogen bonds and halogen bonds. J. Am. Chem. Soc. 2007, 129, 13772–13773. https://doi.org/10.1021/ja073201c.Suche in Google Scholar PubMed

33. Rowe, R. K., Ho, P. S. Relationships between hydrogen bonds and halogen bonds in biological systems. Acta Crystallogr. B 2017, 73, 255–264. https://doi.org/10.1107/S2052520617003109.Suche in Google Scholar PubMed

34. van Terwingen, S., Brüx, D., Wang, R., Englert, U. Hydrogen-bonded and halogen-bonded: orthogonal interactions for the chloride anion of a pyrazolium salt. Molecules 2021, 26; https://doi.org/10.3390/molecules26133982.Suche in Google Scholar PubMed PubMed Central

35. Daghar, C., Issaoui, N., Roisnel, T., Dorcet, V., Marouani, H. Empirical and computational studies on newly synthesis cyclohexylammonium perchlorate. J. Mol. Struct. 2021, 1230, 129820. https://doi.org/10.1016/j.molstruc.2020.129820.Suche in Google Scholar

36. Kazachenko, A. S., Medimagh, M., Issaoui, N., Al-Dossary, O., Wojcik, M. J., Kazachenko, A. S., Miroshnokova, A. V., Malyar, Y. N. Sulfamic acid/water complexes (SAA-H2O(1-8)) intermolecular hydrogen bond interactions: FTIR, X-ray, DFT and AIM analysis. J. Mol. Struct. 2022, 1265, 133394. https://doi.org/10.1016/j.molstruc.2022.133394.Suche in Google Scholar

37. Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., Hutchison, G. R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminf. 2012, 4, 17. https://doi.org/10.1186/1758-2946-4-17.Suche in Google Scholar PubMed PubMed Central

38. Neese, F. The ORCA program system. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73–78; https://doi.org/10.1002/wcms.81.Suche in Google Scholar

39. Perdew, J. P., Ernzerhof, M., Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982–9985. https://doi.org/10.1063/1.472933.Suche in Google Scholar

40. Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. https://doi.org/10.1063/1.456153.Suche in Google Scholar

41. Hellweg, A., Rappoport, D. Development of new auxiliary basis functions of the Karlsruhe segmented contracted basis sets including diffuse basis functions (Def2-SVPD, Def2-TZVPPD, and Def2-QVPPD) for RI-MP2 and RI-CC calculations. Phys. Chem. Chem. Phys. 2015, 17, 1010–1017. https://doi.org/10.1039/C4CP04286G.Suche in Google Scholar

42. Kolář, M. H., Suchá, D., Pitoňák, M. Assessment of scalar relativistic effects on halogen bonding and σ-hole properties. Int. J. Quantum Chem. 2020, 120, e26392. https://doi.org/10.1002/qua.26392.Suche in Google Scholar

43. Dennington, R., Keith, T., Millan, J. GaussView Version, 6; Semichem Inc.: Shawnee Mission, KS, USA, 2016.Suche in Google Scholar

44. Avogadro: an open-source molecular builder and visualization tool. Version 1.2, 2016.Suche in Google Scholar

45. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R, Mennucci, B, Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Peralta, J. E., Ogliaro, F, Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J. Gaussian 16, Revision C.01; Gaussian Inc.: Wallingford, CT, 2016.Suche in Google Scholar

46. Reed, A. E., Curtiss, L. A., Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899–926. https://doi.org/10.1021/cr00088a005.Suche in Google Scholar

47. Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J., Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. https://doi.org/10.1021/ja100936w.Suche in Google Scholar PubMed PubMed Central

48. Bader, R. F. W. Atoms in molecules. Acc. Chem. Res. 1985, 18, 9–15. https://doi.org/10.1021/ar00109a003.Suche in Google Scholar

49. Lu, T., Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. https://doi.org/10.1002/jcc.22885.Suche in Google Scholar PubMed

50. Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2012, 2, 73–78. https://doi.org/10.1002/wcms.81.Suche in Google Scholar

51. Neese, F. Software update: the ORCA program system – version 5.0. WIREs Comput. Mol. Sci. 2022, 12, e1606. https://doi.org/10.1002/wcms.1606.Suche in Google Scholar

52. Altun, A., Neese, F., Bistoni, G. Local energy decomposition analysis of hydrogen-bonded dimers within a domain-based pair natural orbital coupled cluster study. Beilstein J. Org. Chem. 2018, 14, 919–929. https://doi.org/10.3762/bjoc.14.79.Suche in Google Scholar PubMed PubMed Central

53. Martyna, G. J., Klein, M. L., Tuckerman, M. Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 1992, 97, 2635–2643. https://doi.org/10.1063/1.463940.Suche in Google Scholar

54. Koch, U., Popelier, P. L. A. Characterization of C-H-O hydrogen bonds on the basis of the charge density. J. Phys. Chem. 1995, 99, 9747–9754. https://doi.org/10.1021/j100024a016.Suche in Google Scholar

55. Popelier, P. L. A. Characterization of a dihydrogen bond on the basis of the electron density. J. Phys. Chem. A 1998, 102, 1873–1878. https://doi.org/10.1021/jp9805048.Suche in Google Scholar

56. Rad, A. S., Shahavi, M. H., Esfahani, M. R., Darvishinia, N., Ahmadizadeh, S. Are nickel- and titanium-doped fullerenes suitable adsorbents for dopamine in an aqueous solution? Detailed DFT and AIM studies. J. Mol. Liq. 2021, 322, 114942. https://doi.org/10.1016/j.molliq.2020.114942.Suche in Google Scholar

57. Riplinger, C., Neese, F. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 2013, 138, 34106. https://doi.org/10.1063/1.4773581.Suche in Google Scholar PubMed

58. Riplinger, C., Sandhoefer, B., Hansen, A., Neese, F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 2013, 139, 134101. https://doi.org/10.1063/1.4821834.Suche in Google Scholar PubMed

59. Bistoni, G. Finding chemical concepts in the Hilbert space: coupled cluster analyses of noncovalent interactions. WIREs Comput. Mol. Sci. 2020, 10, e1442. https://doi.org/10.1002/wcms.1442.Suche in Google Scholar

60. Pooventhiran, T., Marondedze, E. F., Govender, P. P., Bhattacharyya, U., Rao, D. J., Aazam, E. S., Kuthanapillil, J. M., Tomlal Jose, E., Thomas, R. Energy and reactivity profile and proton affinity analysis of rimegepant with special reference to its potential activity against SARS-CoV-2 virus proteins using molecular dynamics. J. Mol. Model. 2021, 27; https://doi.org/10.1007/s00894-021-04885-z.Suche in Google Scholar PubMed PubMed Central

61. Thomas, R., Pooventhiran, T., Bakht, M. A., Alzahrani, A. Y., Salem, M. A. Study of interaction between different solvents and neurotransmitters dopamine, L-adrenaline, and L-noradrenaline using LED, QTAIM and AIMD. J. Mol. Liq. 2022, 368; https://doi.org/10.1016/j.molliq.2022.120708.Suche in Google Scholar

62. Pooventhiran, T., Gangadharappa, B. S., Ali, O. A. A., Thomas, R., Saleh, D. I. Study of the structural features and solvent effects using ab initio molecular dynamics and energy decomposition analysis of atogepant in water and ammonia. J. Mol. Liq. 2022, 352, 118672; https://doi.org/10.1016/j.molliq.2022.118672.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zpch-2023-0570).


Received: 2023-12-26
Accepted: 2024-01-21
Published Online: 2024-02-15
Published in Print: 2024-09-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0570/html?lang=de
Button zum nach oben scrollen