Rice husk composite with polyaniline, sodium alginate and polypyrrole: naphthalene adsorption kinetics, equilibrium and thermodynamic studies
Abstract
In this investigation, composites consisting of polypyrrole (PPy), polyaniline (PAN), and sodium alginate combined with rice husk (RH) biomass were fabricated, utilizing them as adsorbents for naphthalene. The optimization of key process variables, including pH, pesticide concentration, composite dosage, contact time, and temperature were systematically undertaken to enhance the removal efficiency of naphthalene. Notably, the composites exhibited promising efficacy in adsorbing naphthalene, with native rice husk and PPy/RH (at pH 4), PAN/RH (at pH 5), and Na-alginate/RH (at pH 6) displaying the highest removal rates. Optimized conditions for composite dosage, temperature, and contact time were determined as 0.05 g, 30 °C, and 90 min, respectively, ensuring efficient removal of naphthalene. The adsorption capacities for naphthalene were found to be 22.04, 23.15, 23.89 and 21.67 (mg/g) for RH, PAN/RH, PPY/RH and Na-alginate/RH, respectively. The Langmuir isotherm and pseudo-first-order kinetics models aptly described the adsorption process onto the composite material. The surface morphology and functional groups involved in the biocomposite formation were examined through scanning electron microscope (SEM) and Fourier-transform infrared (FTIR) techniques. These analyses confirmed that PPy, PAN, and Na-alginate composites with RH biomass exhibit high effectiveness in naphthalene removal, showcasing their potential application in the remediation of naphthalene from effluents.
Funding source: Princess Nourah bint Abdulrahman University Researchers
Award Identifier / Grant number: (PNURSP2024R18)
Funding source: Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
Acknowledgments
The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R18), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
-
Research ethics: Not applicable.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Competing interests: The authors declare that they have no conflicts of interest.
-
Research funding: This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R18), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
-
Data availability: Not applicable.
References
1. Younas, U., Fatima, Z., Saleem, A., Zaki, Z. I., Ali, F., Pervaiz, M., Ashraf, A., Fallatah, A. M., Iqbal, M., Ibrahim, M. M. Z. Phys. Chem. 2023, 237, 1559–1574; https://doi.org/10.1515/zpch-2023-0254.Suche in Google Scholar
2. Nazir, A., Waqas, A., Imran, M., Ali, A., Iqbal, M., Chaudhry, H., Bibi, I., Kausar, A., Alwadai, N., Ahmad, N. Z. Phys. Chem. 2023, 237, 645–662; https://doi.org/10.1515/zpch-2022-0168.Suche in Google Scholar
3. Nazir, A., Malik, K., Mahmood, Z., Latif, S., Imran, M., Iqbal, M. Z. Phys. Chem. 2023, 237, 243–256; https://doi.org/10.1515/zpch-2022-0034.Suche in Google Scholar
4. Iqbal, Z., Imran, M., Latif, S., Nazir, A., Ibrahim, S. M., Ahmad, I., Iqbal, M., Iqbal, S. Z. Phys. Chem. 2023, 237, 1139–1152; https://doi.org/10.1515/zpch-2022-0113.Suche in Google Scholar
5. Obek, E., Sasmaz, A. Bull. Environ. Contam. Toxicol. 2011, 86, 217–220; https://doi.org/10.1007/s00128-011-0197-z.Suche in Google Scholar PubMed
6. Manikandan, A., Sridhar, R., Arul Antony, S., Ramakrishna, S. J. Mol. Struct. 2014, 1076, 188–200; https://doi.org/10.1016/j.molstruc.2014.07.054.Suche in Google Scholar
7. Sasmaz, A., Ozkan, S., Gursu, M. F., Sasmaz, M. Appl. Radiat. Isot. 2017, 129, 185–188; https://doi.org/10.1016/j.apradiso.2017.07.060.Suche in Google Scholar PubMed
8. Sasmaz, A. Int. J. Phytoremediation 2009, 11, 385–395; https://doi.org/10.1080/15226510802565584.Suche in Google Scholar
9. Iqbal, M., Shahid, M., Ali, Z., Nazir, A., Alqahtani, F. O., Zaheer, M., Alshawwa, S. Z., Iqbal, D. N., Younas, U., Bukhari, A. Z. Phys. Chem. 2023, 237, 257–271; https://doi.org/10.1515/zpch-2021-3149.Suche in Google Scholar
10. Arif, H., Yasir, M., Ali, F., Nazir, A., Ali, A., Al Huwayz, M., Alwadai, N., Iqbal, M. Z. Phys. Chem. 2023, 237, 689–705; https://doi.org/10.1515/zpch-2023-0224.Suche in Google Scholar
11. Nazir, A., Zahid, S., Mahmood, Z., Kanwal, F., Latif, S., Imran, M., Hassan, F., Iqbal, M. Z. Phys. Chem. 2022, 236, 1301–1319; https://doi.org/10.1515/zpch-2022-0014.Suche in Google Scholar
12. Meena, B. C., Dinesh, A., Ezhlilarasi, J. C., Ayyar, M., Pandiyarajan, S., Kalaivani, S. S., Muthukrishnaraj, A., Jaganathan, S. K., Chuang, H.-C. Z. Phys. Chem. 2023; https://doi.org/10.1515/zpch-2023-0475.Suche in Google Scholar
13. Dinesh, A., Kanmani Raja, K., Manikandan, A., Almessiere, M. A., Slimani, Y., Baykal, A., Saeed Alorfi, H., Hussein, M. A., Khan, A. J. Mater. Res. Technol. 2022, 18, 5280–5289; https://doi.org/10.1016/j.jmrt.2022.04.121.Suche in Google Scholar
14. Alkherraz, A. M., Elsherif, K. M., Blayblo, N. A. Chem Int. 2023, 9, 134–145.Suche in Google Scholar
15. Abid, H., Amanat, A., Ahmed, D., Qamar, T. Chem Int. 2023, 9, 1–7.Suche in Google Scholar
16. Abbas, N., Hussain, N., Gohar, U. F., Zaheer, F., Hamza, M., Yasir, M., Abbas, A. Chem Int. 2022, 8, 114–129.Suche in Google Scholar
17. Şaşmaz, A. Int. J. Phytoremediation 2008, 10, 302–310; https://doi.org/10.1080/15226510802096119.Suche in Google Scholar PubMed
18. Saeed, M., Alwadai, N., Ben Farhat, L., Baig, A., Nabgan, W., Iqbal, M. Arab. J. Chem. 2022, 15, 103732; https://doi.org/10.1016/j.arabjc.2022.103732.Suche in Google Scholar
19. Ali, Z., Nazir, R., Saleem, S., Nazir, A., Alfryyan, N., Alwadai, N., Iqbal, M. Z. Phys. Chem. 2023, 237, 147–161; https://doi.org/10.1515/zpch-2022-0137.Suche in Google Scholar
20. Rasheed, A., Bibi, I., Majid, F., Kamal, S., Taj, B., Raza, M., Khaliq, N., Katubi, K. M., Ezzine, S., Alwadai, N., Iqbal, M. Phys. B 2022, 646, 414303; https://doi.org/10.1016/j.physb.2022.414303.Suche in Google Scholar
21. Yakout, S., Daifullah, A., El-Reefy, S. Adsorpt. Sci. Technol. 2013, 31, 293–302; https://doi.org/10.1260/0263-6174.31.4.293.Suche in Google Scholar
22. Agarry, S., Ogunleye, O., Aworanti, O. Environ. Technol. 2013, 34, 825–839; https://doi.org/10.1080/09593330.2012.720616.Suche in Google Scholar PubMed
23. Yuan, M., Tong, S., Zhao, S., Jia, C. Q. J. Hazard. Mater. 2010, 181, 1115–1120; https://doi.org/10.1016/j.jhazmat.2010.05.130.Suche in Google Scholar PubMed
24. Sasmaz, M., Senel, G. U., Obek, E. Environ. Geochem. Health 2020, 43, 1–14.10.1007/s10653-020-00629-9Suche in Google Scholar PubMed
25. Sasmaz, M., Öbek, E., Sasmaz, A. Appl. Geochemistry 2019, 100, 287–292; https://doi.org/10.1016/j.apgeochem.2018.12.011.Suche in Google Scholar
26. Ali, F., Moin-ud-Din, G., Iqbal, M., Nazir, A., Altaf, I., Alwadai, N., Siddiqua, U. H., Younas, U., Ali, A., Kausar, A., Ahmad, N. J. Mater. Res. Technol. 2023, 23, 3626–3637; https://doi.org/10.1016/j.jmrt.2023.02.011.Suche in Google Scholar
27. Dagde, K., Ikenyiri, P., Yorpah, P. Chem. Int. 2023, 9, 94–103.Suche in Google Scholar
28. Ukpaka, C. P., Ugiri, A. C. Chem. Int. 2022, 8, 77–88.Suche in Google Scholar
29. Awwad, A. M., Amer, M. A. Chem. Int. 2022, 8, 95–100.Suche in Google Scholar
30. Alagarsamy, A., Chandrasekaran, S., Manikandan, A. J. Mol. Struct. 2022, 1247, 131275; https://doi.org/10.1016/j.molstruc.2021.131275.Suche in Google Scholar
31. Vinosha, P. A., Manikandan, A., Preetha, A. C., Dinesh, A., Slimani, Y., Almessiere, M. A., Baykal, A., Xavier, B., Nirmala, G. F. J. Supercond. Novel Magn. 2021, 34, 995–1018; https://doi.org/10.1007/s10948-021-05854-6.Suche in Google Scholar
32. Jaganathan, S. K., Mani, M. P., Manikandan, A., Rathanasamy, R. Polym. Test. 2019, 78, 105955; https://doi.org/10.1016/j.polymertesting.2019.105955.Suche in Google Scholar
33. Maruthamani, D., Vadivel, S., Kumaravel, M., Saravanakumar, B., Paul, B., Dhar, S. S., Habibi-Yangjeh, A., Manikandan, A., Ramadoss, G. J. Colloid Interface Sci. 2017, 498, 449–459; https://doi.org/10.1016/j.jcis.2017.03.086.Suche in Google Scholar PubMed
34. Ali, Z., Naz, A., Haq, N. U., Nazir, A., Munawar, A., Khan, A. L., Elqahtani, Z. M., Alwadai, N., Younas, U., Iqbal, M. Z. Phys. Chem. 2023, 237, 951–967; https://doi.org/10.1515/zpch-2023-0230.Suche in Google Scholar
35. Zafar, M. N., Nadeem, R., Hanif, M. A. J. Hazard. Mater. 2007, 143, 478–485; https://doi.org/10.1016/j.jhazmat.2006.09.055.Suche in Google Scholar PubMed
36. Tahir, M. A., Bhatti, H. N., Iqbal, M. J. Environ. Chem. Eng. 2016, 4, 2431–2439; https://doi.org/10.1016/j.jece.2016.04.020.Suche in Google Scholar
37. Tahir, N., Bhatti, H. N., Iqbal, M., Noreen, S. Int. J. Biol. Macromol. 2016, 94, 210–220; https://doi.org/10.1016/j.ijbiomac.2016.10.013.Suche in Google Scholar PubMed
38. Zaheer, S., Bhatti, H., Sdaf, S., Safa, Y., Zia-ur-Ruhman, M. Animal. Plants Sci. 2014, 24, 272–279.Suche in Google Scholar
39. Owabor, C., Agarry, S., Jato, D. Water Treat. 2012, 48, 315–319; https://doi.org/10.1080/19443994.2012.698834.Suche in Google Scholar
40. Maqbool, M., Sadaf, S., Bhatti, H. N., Rehmat, S., Kausar, A., Alissa, S., Iqbal, M. Surf. Interfaces 2021, 25, 101183; https://doi.org/10.1016/j.surfin.2021.101183.Suche in Google Scholar
41. Ho, Y., Ng, J., McKay, G. Sep. Purif. Methods 2000, 29, 189–232; https://doi.org/10.1081/spm-100100009.Suche in Google Scholar
42. Ho, Y.-S., McKay, G. Process Biochem. 1999, 34, 451–465; https://doi.org/10.1016/s0032-9592(98)00112-5.Suche in Google Scholar
43. Weber, W. J., Morris, J. C. J. Sanit. Eng. Div. 1963, 89, 31–60.10.1061/JSEDAI.0000430Suche in Google Scholar
44. Dubinin, M., Raduskhevich, L. Phys. Chem. 1947, 55, 327–329.10.1001/archderm.1947.01520030020003Suche in Google Scholar PubMed
45. Harkins, W. D., Jura, G. J. Am. Chem. Soc. 1944, 66, 1366–1373; https://doi.org/10.1021/ja01236a048.Suche in Google Scholar
46. Temkin, M. Acta Physiochim. URSS. 1940, 12, 327–356.Suche in Google Scholar
47. Freundlich, H. J. Phys. Chem. 1906, 57, 1100–1107.Suche in Google Scholar
48. Lagergren, S. Handlingar 1898, 24, 1–39.10.1055/s-0029-1204205Suche in Google Scholar
49. Chen, S., Yang, R. Langmuir 1994, 10, 4244–4249; https://doi.org/10.1021/la00023a054.Suche in Google Scholar
50. Dada, A., Olalekan, A., Olatunya, A., Dada, O. IOSR J. Appl. Chem. 2012, 3, 38–45.Suche in Google Scholar
51. Abu-Elella, R., Ossman, M., Abd-Elfatah, M., Elgendi, A. Desalination Water Treat. 2013, 51, 3472–3481; https://doi.org/10.1080/19443994.2012.749370.Suche in Google Scholar
52. Tabak, A., Eren, E., Afsin, B., Caglar, B. J. Hazard. Mater. 2009, 161, 1087–1094; https://doi.org/10.1016/j.jhazmat.2008.04.062.Suche in Google Scholar PubMed
53. Mathiarasu, R. R., Manikandan, A., Panneerselvam, K., George, M., Raja, K. K., Almessiere, M. A., Slimani, Y., Baykal, A., Asiri, A. M., Kamal, T., Khan, A. J. Mater. Res. Technol. 2021, 15, 5936–5947; https://doi.org/10.1016/j.jmrt.2021.11.047.Suche in Google Scholar
54. Ghafoor, A., Bibi, I., Majid, F., Kamal, S., Jilani, K., Sultan, M., Alwadai, N., Ali, A., Ali, A., Nazir, A., Iqbal, M. Mater. Sci. Semicond. Process. 2023, 160, 107408; https://doi.org/10.1016/j.mssp.2023.107408.Suche in Google Scholar
55. Sasmaz, A., Sasmaz, M. Environ. Exp. Bot. 2009, 67, 139–144; https://doi.org/10.1016/j.envexpbot.2009.06.014.Suche in Google Scholar
56. Nazir, A., Raza, M., Abbas, M., Abbas, S., Ali, A., Ali, Z., Younas, U., Al-Mijalli, S. H., Iqbal, M. Z. Phys. Chem. 2022, 236, 1203–1217; https://doi.org/10.1515/zpch-2022-0024.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review Article
- The assessment of pollutant waste generated by battery and its effect on the environment: a concise review
- Original Papers
- Biosynthesis of ZnO/Ag nanocomposites heterostructure for efficient photocatalytic degradation of antibiotics and synthetic dyes
- Kinetics, equilibrium and thermodynamics investigations of polypyrrole and polyaniline composites with Oryza sativa biomass for the removal of Nitenpyram insecticide
- Remediation of pesticides, acetamiprid and imidacloprid from aqueous solutions using cellulose derived from sawdust of Populus nigra
- Rice husk composite with polyaniline, sodium alginate and polypyrrole: naphthalene adsorption kinetics, equilibrium and thermodynamic studies
- Graphene oxide composite as a novel corrosion inhibitor for N80 steel in 15 % HCl: experimental and quantum chemical examinations
- Molecular level interaction, molecular structure, chemical reactivity, electronic and topological exploration and docking studies of 1-acetyl-4-piperidinecarboxylic acid
- Exploring the dynamics of halogen and hydrogen bonds in halogenated coumarins
- Electrochemical sensing and detection of phosgene and thiophosgene chemical warfare agents (CWAs) by all-boron B38 fullerene analogue: a DFT insight
Artikel in diesem Heft
- Frontmatter
- Review Article
- The assessment of pollutant waste generated by battery and its effect on the environment: a concise review
- Original Papers
- Biosynthesis of ZnO/Ag nanocomposites heterostructure for efficient photocatalytic degradation of antibiotics and synthetic dyes
- Kinetics, equilibrium and thermodynamics investigations of polypyrrole and polyaniline composites with Oryza sativa biomass for the removal of Nitenpyram insecticide
- Remediation of pesticides, acetamiprid and imidacloprid from aqueous solutions using cellulose derived from sawdust of Populus nigra
- Rice husk composite with polyaniline, sodium alginate and polypyrrole: naphthalene adsorption kinetics, equilibrium and thermodynamic studies
- Graphene oxide composite as a novel corrosion inhibitor for N80 steel in 15 % HCl: experimental and quantum chemical examinations
- Molecular level interaction, molecular structure, chemical reactivity, electronic and topological exploration and docking studies of 1-acetyl-4-piperidinecarboxylic acid
- Exploring the dynamics of halogen and hydrogen bonds in halogenated coumarins
- Electrochemical sensing and detection of phosgene and thiophosgene chemical warfare agents (CWAs) by all-boron B38 fullerene analogue: a DFT insight