Startseite Naturwissenschaften Biosynthesis of ZnO/Ag nanocomposites heterostructure for efficient photocatalytic degradation of antibiotics and synthetic dyes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Biosynthesis of ZnO/Ag nanocomposites heterostructure for efficient photocatalytic degradation of antibiotics and synthetic dyes

  • Laila Hamza , Salah Eddine Laouini , Hamdi Ali Mohammed EMAIL logo , Souhaila Meneceur , Chaima Salmi , Fahad Alharthi , Souheila Legmairi und Johar Amin Ahmed Abdullah
Veröffentlicht/Copyright: 19. Februar 2024

Abstract

This study addresses the pressing issue of environmental pollution caused by antibiotics and synthetic dyes in aquatic ecosystems, presenting a novel approach for their efficient photocatalytic degradation. Zinc oxide (ZnO)-based nanoscale photocatalysts, including ZnO nanoparticles (NPs) and ZnO/Ag nanocomposite heterostructure (NCH), were synthesized through an innovative and eco-friendly method utilizing an extract derived from discarded lemon peels as a biogenic reducing agent. The synthesized materials were extensively characterized through UV spectrophotometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The results confirmed the different morphologies of ZnO NPs and ZnO/Ag NCH, with average sizes of 20 nm and 42 nm, respectively. Notably, the ZnO NPs and ZnO/Ag NCH exhibited optical bandgap energies of 3.2 eV and 2.85 eV, respectively, signifying their potential as efficient photocatalysts. Under natural sunlight irradiation, these materials demonstrated exceptional photocatalytic activity, achieving a remarkable 98.8 % degradation rate for metronidazole and 90 % for ciprofloxacin in just 12 min. Furthermore, the ZnO NPs effectively removed 84 % of Toluidine Blue and 77 % of Congo red after 120 min, while ZnO/Ag NCH enhanced degradation rates to approximately 90.5 % for Toluidine Blue and 86 % for Congo Red. This research highlights the significant physicochemical properties and novel synthesis methods employed, positioning these sustainable nanomaterials as promising solutions for mitigating environmental pollution effectively.


Corresponding author: Hamdi Ali Mohammed, Department of Process Engineering, Faculty of Technology, University of El Oued, El-Oued 39000, Algeria; and Laboratory of Biotechnology Biomaterial and Condensed Matter, Faculty of Technology, University of El Oued, El-Oued 39000, Algeria, E-mail:

Acknowledgments

The authors would like to thank the Algerian Directorate General for Scientific Research and Technological Development-DGRSDT for financial assistance, Laboratory of Biotechnology Biomaterial and Condensed Matter, Faculty of Technology, El Oued University, El-Oued 39000, Algeria. Authors extend their thanks to Researchers Supporting Project (RSP2023R160), King Saud University (Riyadh, Saudi Arabia).

  1. Research ethics: Not applicable.

  2. Author contributions: Investigation, data acquisition, con-capitalization: L.S.E., H.A.M., L. H., C.S.; formal analysis: H. A. M., C.S., L.H., J.A.A.A.; methodology: H.A.M., C.S., J.A.A.A.; writing – original draft: H.A.M., C.S., L.H; review and editing: H.A.M., L.S.E., F.A.; data curation: H.A.M., S.M.; Data analysis: H.A.M., S.L.; resources: L.H., H.A.M., C.S.; supervision: L.S.E., S.M.

  3. Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  4. Research funding: None declared.

  5. Data availability: All data generated or analyzed during this study are included in this published article.

References

1. Kurniawan, T. A., Lo, W., Liang, X., Goh, H. H., Othman, M. H. D., Chong, K. K., Chew, K. W. Remediation technologies for contaminated groundwater due to arsenic (As), mercury (Hg), and/or fluoride (F): a critical review and way forward to contribute to carbon neutrality. Sep. Purif. Technol. 2023, , 123474; https://doi.org/10.1016/j.seppur.2023.123474.Suche in Google Scholar

2. Sumra, A. A., Aadil, M., Ejaz, S. R., Anjum, S., Saleem, T., Zain, M., Alsafari, I. A. Biological synthesis of nanostructured ZnO as a solar-light driven photocatalyst and antimicrobial agent. Ceram. Int. 2022, 48, 14652–14661; https://doi.org/10.1016/j.ceramint.2022.01.359.Suche in Google Scholar

3. Shafiq, K., Aadil, M., Hassan, W., Choudhry, Q., Gul, S., Rais, A., Fattah, A. A., Mahmoud, K. H., Ansari, M. Z. Cobalt and holmium co-doped nickel ferrite nanoparticles: synthesis, characterization and photocatalytic application studies. Z Phys. Chem. 2023, 237, 1325–1344; https://doi.org/10.1515/zpch-2023-0273.Suche in Google Scholar

4. Khan, S., Naushad, M., Govarthanan, M., Iqbal, J., Alfadul, S. M. Emerging contaminants of high concern for the environment: current trends and future research. Environ. Res. 2022, 207, 112609; https://doi.org/10.1016/j.envres.2021.112609.Suche in Google Scholar PubMed

5. Zohra, R., Meneceur, S., Eddine, L. S., Bouafia, A., Mohammed, H. A., Hasan, G. G. Biosynthesis and characterization of MnO2 and Zn/Mn2O4 NPs using Ziziphus spina-Christi aqueous leaves extract: effect of decoration on photodegradation activity against various organic dyes. Inorg. Chem. Commun. 2023, 156, 111304; https://doi.org/10.1016/j.inoche.2023.111304.Suche in Google Scholar

6. Mora-Gamboa, M. P., Rincón-Gamboa, S. M., Ardila-Leal, L. D., Poutou-Piñales, R. A., Pedroza-Rodríguez, A. M., Quevedo-Hidalgo, B. E. Impact of antibiotics as waste, physical, chemical, and enzymatical degradation: use of laccases. Molecules 2022, 27, 4436; https://doi.org/10.3390/molecules27144436.Suche in Google Scholar PubMed PubMed Central

7. Liu, P., Wu, Z., Abramova, A. V., Cravotto, G. Sonochemical processes for the degradation of antibiotics in aqueous solutions: a review. Ultrason. Sonochem. 2021, 74, 105566; https://doi.org/10.1016/j.ultsonch.2021.105566.Suche in Google Scholar PubMed PubMed Central

8. Asadi, F., Asgari, G., Seid-Mohammadi, A., Torkshavand, Z. Optimization of hydrogen peroxide/nio nanoparticle photocatalytic process by degrading cephalexin from aqueous solution using taguchi method: mineralization, mechanism and pathway. Desalin. Water. Treat. 2020, 201, 323–337; https://doi.org/10.5004/dwt.2020.25934.Suche in Google Scholar

9. Zainab, S. M., Junaid, M., Xu, N., Malik, R. N. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: a global review on dissemination, sources, interactions, environmental and human health risks. Water Res. 2020, 187, 116455; https://doi.org/10.1016/j.watres.2020.116455.Suche in Google Scholar PubMed

10. Chaturvedi, P., Shukla, P., Giri, B. S., Chowdhary, P., Chandra, R., Gupta, P., Pandey, A. Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: a review on emerging contaminants. Environ. Res. 2021, 194, 110664; https://doi.org/10.1016/j.envres.2020.110664.Suche in Google Scholar PubMed

11. Díez-Méndez, A., García-Fraile, P., Solano, F., Rivas, R. The ant Lasius niger is a new source of bacterial enzymes with biotechnological potential for bleaching dye. Sci. Rep. 2019, 9, 15217; https://doi.org/10.1038/s41598-019-51669-w.Suche in Google Scholar PubMed PubMed Central

12. Boutalbi, A., Mohammed, H. A., Meneceur, S., Eddine, L. S., Abdullah, J. A. A., Alharthi, F., Hasan, G. G. Photocatalytic dye degradation efficiency and reusability of potassium polyacrylate hydrogel loaded Ag@ ZnO nanocomposite. Transition Met. Chem. 2023, 48, 1–11; https://doi.org/10.1007/s11243-023-00548-5.Suche in Google Scholar

13. Oladoye, P. O., Bamigboye, M. O., Ogunbiyi, O. D., Akano, M. T. Toxicity and decontamination strategies of Congo red dye. Groundw. Sustain. Dev. 2022, 19, 100844; https://doi.org/10.1016/j.gsd.2022.100844.Suche in Google Scholar

14. Roy, S., Ahmaruzzaman, M. Nanoceramic based composites for removal of dyes from aqueous stream. In Advanced Oxidation Processes in Dye-Containing Wastewater, Vol. 2; Springer, 2022; pp. 277–295.10.1007/978-981-19-0882-8_10Suche in Google Scholar

15. Khan, W. U., Ahmed, S., Dhoble, Y., Madhav, S. A critical review of hazardous waste generation from textile industries and associated ecological impacts. J. Indian Chem. Soc. 2022, 100, 100829; https://doi.org/10.1016/j.jics.2022.100829.Suche in Google Scholar

16. Titchou, F. E., Zazou, H., Afanga, H., El Gaayda, J., Ait Akbour, R., Nidheesh, P. V., Hamdani, M. Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes. Chem. Eng. Process.: Process Intensif. 2021, 169, 108631; https://doi.org/10.1016/j.cep.2021.108631.Suche in Google Scholar

17. Eddine, L. S., Mohammed, H. A., Salmi, C., Souhaila, M., Hasan, G. G., Alharthi, F., Abdullah, J. A. A. Biogenic synthesis of Fe3O4/NiO nanocomposites using Ocimum basilicum leaves for enhanced degradation of organic dyes and hydrogen evolution. J. Porous Mater. 2023, 31, 1–14; https://doi.org/10.1007/s10934-023-01509-0.Suche in Google Scholar

18. Mahboob, I., Shafiq, I., Shafique, S., Akhter, P., Amjad, U. S., Hussain, M., Park, Y. K. Effect of active species scavengers in photocatalytic desulfurization of hydrocracker diesel using mesoporous Ag3VO4. Chem. Eng. J. 2022, 441, 136063; https://doi.org/10.1016/j.cej.2022.136063.Suche in Google Scholar

19. Pandis, P. K., Kalogirou, C., Kanellou, E., Vaitsis, C., Savvidou, M. G., Sourkouni, G., Zorpas, A. A., Argirusis, C. Key points of advanced oxidation processes (AOPs) for wastewater, organic pollutants and pharmaceutical waste treatment: a mini review. ChemEngineering 2022, 6, 8; https://doi.org/10.3390/chemengineering6010008.Suche in Google Scholar

20. Raizada, P., Sudhaik, A., Singh, P. Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: a review. Mater. Sci. Energy Technol. 2019, 2, 509–525; https://doi.org/10.1016/j.mset.2019.04.007.Suche in Google Scholar

21. Abdullah, F., Bakar, N. A., Bakar, M. A. Current advancements on the fabrication, modification, and industrial application of zinc oxide as photocatalyst in the removal of organic and inorganic contaminants in aquatic systems. J. Hazard. Mater. 2022, 424, 127416; https://doi.org/10.1016/j.jhazmat.2021.127416.Suche in Google Scholar PubMed

22. Alshammari, B. H., Lashin, M. M. A., Mahmood, M. A., Al-Mubaddel, F. S., Ilyas, N., Rahman, N., Sohail, M., Khan, A., Abdullaev, S. S., Khan, R. Organic and inorganic nanomaterials: fabrication, properties and applications. RSC Adv. 2023, 13, 13735–13785; https://doi.org/10.1039/d3ra01421e.Suche in Google Scholar PubMed PubMed Central

23. Hashim, A., Aadil, M., Choudhry, Q., Mubeen, S., Zainab, B., Somaily, H., Shafiq, K., Usman, M., Ansari, M. Z., Mohamed, R. M. Boosting the antimicrobial and Azo dye mineralization activities of ZnO ceramics by enhancing the light-harvesting and charge transport properties. Ceram. Int. 2023, 49, 32377–32387; https://doi.org/10.1016/j.ceramint.2023.07.001.Suche in Google Scholar

24. Karthikeyan, C., Arunachalam, P., Ramachandran, K., Al-Mayouf, A. M., Karuppuchamy, S. Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. J. Alloys Compd. 2020, 828, 154281; https://doi.org/10.1016/j.jallcom.2020.154281.Suche in Google Scholar

25. Huang, Z., Shen, M., Liu, J., Ye, J., Asefa, T. Facile synthesis of an effective gC 3 N 4-based catalyst for advanced oxidation processes and degradation of organic compounds. J. Mater. Chem. A 2021, 9, 14841–14850; https://doi.org/10.1039/d1ta01325d.Suche in Google Scholar

26. Ali, Z., Aadil, M., Zainab, B., Rasool, M. H., Hassan, W., Mubarik, S., Ahmad, Z., Almuhous, N. A., Alothman, A. A., Hussain, M. Synthesis of nanostructured In2O3 ceramics via a green and chemical method for the mineralization of crystal violet dye: a comparative study. Inorg. Chem. Commun. 2023, 157, 111399; https://doi.org/10.1016/j.inoche.2023.111399.Suche in Google Scholar

27. Wagh, S. S., Jagtap, C. V., Kadam, V. S., Shaikh, S. F., Ubaidullah, M., Pandit, B., Salunkhe, D. B., Patil, R. S. Silver doped ZnO nanoparticles synthesized for photocatalysis application. ES Energy Environ. 2022, 17, 94–105; https://doi.org/10.30919/esee8e720.Suche in Google Scholar

28. Divya, G., Sivakumar, S., Sakthi, D., Priyadharsan, A., Arun, V., Kavitha, R., Boobas, S. Developing the NiO/CuTiO 3/ZnO ternary semiconductor heterojunction for harnessing photocatalytic activity of reactive dye with enhanced durability. J. Inorg. Organomet. Polym. Mater. 2021, 31, 4480–4490; https://doi.org/10.1007/s10904-021-02068-0.Suche in Google Scholar

29. Zhang, Y., Wang, C., Yin, R., Cai, A., Yuan, X., Kang, H., Guo, H., Yin, H. AgNPs as efficient co-catalysts significantly improve the photocatalytic and antibacterial activities of NaTaO3 nanofilms. Mater. Sci. Semicond. Process. 2023, 166, 107738; https://doi.org/10.1016/j.mssp.2023.107738.Suche in Google Scholar

30. Khavar, A. H. C., Moussavi, G., Mahjoub, A., Yaghmaeian, K., Srivastava, V., Sillanpää, M., Satari, M. Novel magnetic Fe3O4@ rGO@ ZnO onion-like microspheres decorated with Ag nanoparticles for the efficient photocatalytic oxidation of metformin: toxicity evaluation and insights into the mechanisms. Catal. Sci. Technol. 2019, 9, 5819–5837; https://doi.org/10.1039/c9cy01381d.Suche in Google Scholar

31. Khan, F., Shahid, A., Zhu, H., Wang, N., Javed, M. R., Ahmad, N., Xu, J., Alam, M. A., Mehmood, M. A. Prospects of algae-based green synthesis of nanoparticles for environmental applications. Chemosphere 2022, 293, 133571; https://doi.org/10.1016/j.chemosphere.2022.133571.Suche in Google Scholar PubMed

32. Siddiq, M., Taki, A. G., Aadil, M., Mubarik, S., Cochran, E. W., Zulfiqar, S., Mohammed, A. A., Ijaz, S. Microwave-assisted synthesis of tentacles like Ag-doped copper oxide nano-ceramics: structural, optical, and anti-campylobacter studies. Ceram. Int. 2023, 49, 36590–36599; https://doi.org/10.1016/j.ceramint.2023.08.342.Suche in Google Scholar

33. Aslam, M., Abdullah, A. Z., Rafatullah, M. Recent development in the green synthesis of titanium dioxide nanoparticles using plant-based biomolecules for environmental and antimicrobial applications. J. Ind. Eng. Chem. 2021, 98, 1–16; https://doi.org/10.1016/j.jiec.2021.04.010.Suche in Google Scholar

34. Zeghoud, S., Hemmami, H., Ben Seghir, B., Ben Amor, I., Kouadri, I., Rebiai, A., Messaoudi, M., Ahmed, S., Pohl, P., Simal-Gandara, J. A review on biogenic green synthesis of ZnO nanoparticles by plant biomass and their applications. Mater. Today Commun. 2022, 33, 104747; https://doi.org/10.1016/j.mtcomm.2022.104747.Suche in Google Scholar

35. Aboyewa, J. A., Sibuyi, N. R. S., Meyer, M., Oguntibeju, O. O. Green synthesis of metallic nanoparticles using some selected medicinal plants from southern africa and their biological applications. Plants 2021, 10, 1929; https://doi.org/10.3390/plants10091929.Suche in Google Scholar PubMed PubMed Central

36. Pereira, J. A., Berenguer, C. V., Andrade, C. F. P., Câmara, J. S. Unveiling the bioactive potential of fresh fruit and vegetable waste in human health from a consumer perspective. Appl. Sci. 2022, 12, 2747; https://doi.org/10.3390/app12052747.Suche in Google Scholar

37. Chugh, D., Viswamalya, V., Das, B. Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process. J. Genet. Eng. Biotechnol. 2021, 19, 1–21; https://doi.org/10.1186/s43141-021-00228-w.Suche in Google Scholar PubMed PubMed Central

38. Kundu, A., Basu, S., Maity, B. Upcycling waste: Citrus limon peel-derived carbon quantum dots for sensitive detection of tetracycline in the nanomolar range. ACS Omega 2023, 8, 36449–36459; https://doi.org/10.1021/acsomega.3c05424.Suche in Google Scholar PubMed PubMed Central

39. Salmi, C., Souhaila, M., Salah Eddine, L., Mohammed, H. A. M., Hasan, G. G., Mahboub, M. S. Biosynthesis of Mn3O4/PVP nanocomposite for enhanced photocatalytic degradation of organic dyes under sunlight irradiation. J. Cluster Sci. 2023, 35, 1–15; https://doi.org/10.1007/s10876-023-02475-y.Suche in Google Scholar

40. Mohammed Mohammed, H. A., Souhaila, M., Eddine, L. S., Hasan, G. G., Kir, I., Mahboub, M. S. A novel biosynthesis of MgO/PEG nanocomposite for organic pollutant removal from aqueous solutions under sunlight irradiation. Environ. Sci. Pollut. Res. 2023, 30, 57076–57085; https://doi.org/10.1007/s11356-023-26422-6.Suche in Google Scholar PubMed

41. Alzahrani, E. A., Nabi, A., Kamli, M. R., Albukhari, S. M., Althabaiti, S. A., Al-Harbi, S. A., Khan, I., Malik, M. A. Facile green synthesis of ZnO NPs and plasmonic Ag-supported ZnO nanocomposite for photocatalytic degradation of methylene blue. Water 2023, 15, 384; https://doi.org/10.3390/w15030384.Suche in Google Scholar

42. Gurgur, E., Oluyamo, S. S., Adetuyi, A. O., Omotunde, O. I., Okoronkwo, A. E. Green synthesis of zinc oxide nanoparticles and zinc oxide–silver, zinc oxide–copper nanocomposites using Bridelia ferruginea as biotemplate. SN Appl. Sci. 2020, 2, 1–12; https://doi.org/10.1007/s42452-020-2269-3.Suche in Google Scholar

43. Zohra, R., Meneceur, S., Mohammed, H. A., Hasan, G. G., Bouafia, A., Abdullah, J. A. A., Alharthi, F., Eddine, L. S. Enhanced photocatalytic degradation of dyes and antibiotics with biosynthesized FeMn2O4 nanocomposite under sunlight irradiation: isotherm and kinetic study. Biomass Convers. Biorefin. 2023, 13, 1–12; https://doi.org/10.1007/s13399-023-04497-y.Suche in Google Scholar

44. Aadil, M., Kousar, T., Hussain, M., Somaily, H., Abdulla, A. K., Muhammad, E. R., Al-Abbad, E. A., Salam, M. A., Albukhari, S. M., Baamer, D. F., Ansari, M. Z. Generation of mesoporous npn (ZnO–CuO–CeO2) heterojunction for highly efficient photodegradation of micro-organic pollutants. Ceram. Int. 2023, 49, 4846–4854; https://doi.org/10.1016/j.ceramint.2022.09.375.Suche in Google Scholar

45. Bouafia, A., Meneceur, S., Chami, S., Laouini, S. E., Daoudi, H., Legmairi, S., Mohammed Mohammed, H. A., Aoun, N., Menaa, F. Removal of hydrocarbons and heavy metals from petroleum water by modern green nanotechnology methods. Sci. Rep. 2023, 13, 5637; https://doi.org/10.1038/s41598-023-32938-1.Suche in Google Scholar PubMed PubMed Central

46. Zhao, Y., Ding, W., Xiao, Y., Yang, P. First-principles study on p-type transformation of ZnO doped by Ag element. Phys. B 2023, 657, 414810; https://doi.org/10.1016/j.physb.2023.414810.Suche in Google Scholar

47. Li, T., Aadil, M., Zulfiqar, S., Anwar, A., Yakout, S. M., Panduro-Tenazoa, N. M., Mubeen, S. Synthesis of doped and porous CuO with boosted light-harvesting features for the photocatalytic mineralization of azo dyes. Ceram. Int. 2023, 49, 27827–27836; https://doi.org/10.1016/j.ceramint.2023.05.272.Suche in Google Scholar

48. Nazik, G., Aadil, M., Zulfiqar, S., Hassan, W., Rahman, A., Ibrahim, S. M., Naseem, K., Sheikh, T. A., Akhtar, M. N. Synthesis of doped metal sulfide nanoparticles and their graphene reinforced nanohybrid for Pb (II) detection. Z. Phys. Chem. 2023, 237, 1257–1285; https://doi.org/10.1515/zpch-2023-0252.Suche in Google Scholar

49. Rashid, M., Hassan, W., Aadil, M., Somaily, H., Mahdi, N. M., Lataef, R., Taki, A. G., Srithilat, K., Baamer, D. F., Albukhari, S. M., Salam, M. A., Llyas, A. Solar-light-driven and magnetically recoverable doped nano-ferrite: an ideal photocatalyst for water purification applications. Opt. Mater. 2023, 135, 113192; https://doi.org/10.1016/j.optmat.2022.113192.Suche in Google Scholar

50. Tamam, N., Aadil, M., Hassan, W., Ejaz, S. R., Najm, Z. M., Alsafari, I. A., Aman, S., Trukhanov, A., Al-Buriahi, M., Boukhris, I. Surfactant assisted synthesis of nanostructured Mn-doped CuO: an efficient photocatalyst for environmental remediation. Ceram. Int. 2022, 48, 29589–29600; https://doi.org/10.1016/j.ceramint.2022.06.213.Suche in Google Scholar

51. Pavlova, L., Shumilova, L.P., Radomskaya, V.I., Sorokin, A.P., Ivanov, V.V., Noskova, L.P., Leusova, N.Yu. Sorption of rare earth elements by organic matter from aqueous solutions according to experimental data. Dokl. Earth Sci. 2023, 512, 946–952.10.1134/S1028334X23601207Suche in Google Scholar

52. Afsan, Z., Ahmad, A., Zafar, M., Das, A., Roisnel, T., Ghosh, S. The chemistry of κ2-N, S-chelated Ru (II) complexes with 1, 4-diethynylbenzene. Polyhedron 2022, 227, 116120; https://doi.org/10.1016/j.poly.2022.116120.Suche in Google Scholar

53. Volkov, D. S., Rogova, O. B., Proskurnin, M. A. Organic matter and mineral composition of silicate soils: FTIR comparison study by photoacoustic, diffuse reflectance, and attenuated total reflection modalities. Agronomy 2021, 11, 1879; https://doi.org/10.3390/agronomy11091879.Suche in Google Scholar

54. Kir, I., Laouini, S. E., Meneceur, S., Bouafia, A., Mohammed, H. A. M. Biosynthesis and characterization of novel nanocomposite ZnO/BaMg2 efficiency for high-speed adsorption of AZO dye. Biomass Convers. Biorefin. 2023, 13, 1–10; https://doi.org/10.1007/s13399-023-03985-5.Suche in Google Scholar

55. Mohammed, H. A., Eddine, L. S., Souhaila, M., Hasan, G. G., Kir, I., Abdullah, J. A. A. Green synthesis of SnO2 nanoparticles from Laurus nobilis L. Extract for enhanced gelatin-based films and CEF@ SnO2 for efficient antibacterial activity. Food Bioprocess Technol. 2023, 1–19; https://doi.org/10.1007/s11947-023-03209-8.Suche in Google Scholar

56. Thombare, N., Mahto, A., Singh, D., Chowdhury, A. R., Ansari, M. F. Comparative FTIR characterization of various natural gums: a criterion for their identification. J. Polym. Environ. 2023, 31, 1–9; https://doi.org/10.1007/s10924-023-02821-1.Suche in Google Scholar

57. Hasan, G. G., Mohammed, H. A., Althamthami, M., Khelef, A., Laouini, S. E., Meneceur, S. Synergistic effect of novel biosynthesis SnO2@ Fe3O4 nanocomposite: a comprehensive study of its photocatalytic of dyes & antibiotics, antibacterial, and antimutagenic activities. J. Photochem. Photobiol. A: Chem. 2023, 443, 114874; https://doi.org/10.1016/j.jphotochem.2023.114874.Suche in Google Scholar

58. Mustafa, S. M., Barzinjy, A. A., Hamad, A. H., Hamad, S. M. Green synthesis of Ni doped ZnO nanoparticles using dandelion leaf extract and its solar cell applications. Ceram. Int. 2022, 48, 29257–29266; https://doi.org/10.1016/j.ceramint.2022.05.202.Suche in Google Scholar

59. Saranyadevi, S., Suresh, K., Mathiyazhagan, N ., Muthusamy, R., Thirumalaisamy, R. Silver nanoparticles synthesized using asafoetida resin, characterization of their broad spectrum and larvicidal activity. Ann. Romanian Soc. Cell Biol. 2021, 25, 15035–15049.Suche in Google Scholar

60. Azizian, S., Bagheri, M. Enhanced adsorption of Cu2+ from aqueous solution by Ag doped nano-structured ZnO. J. Mol. Liq. 2014, 196, 198–203; https://doi.org/10.1016/j.molliq.2014.03.043.Suche in Google Scholar

61. Bai, L., Zhang, X., Ding, Z., Wang, X., Huang, Y., Kannan, P. One-pot synthesis of Ag nanoparticles/ZnO nanorods heterostructures for organic dyes decoloring. J. Taiwan Inst. Chem. Eng. 2019, 103, 118–125; https://doi.org/10.1016/j.jtice.2019.08.002.Suche in Google Scholar

62. Rini, A. S., Defti, A. P., Dewi, R., Jasril, Rati, Y. Biosynthesis of nanoflower Ag-doped ZnO and its application as photocatalyst for methylene blue degradation. Mater. Today: Proc. 2023; https://doi.org/10.1016/j.matpr.2023.03.100.Suche in Google Scholar

63. Abdullah, J. A. A., Rosado, M. J., Guerrero, A., Romero, A. Eco-friendly synthesis of ZnO-nanoparticles using Phoenix dactylifera L., polyphenols: physicochemical, microstructural, and functional assessment. New J. Chem. 2023, 47, 4409–4417; https://doi.org/10.1039/d3nj00131h.Suche in Google Scholar

64. Zaman, Y., Ishaque, M. Z., Waris, K., Shahzad, M., Siddique, A. B., Arshad, M. I., Zaman, H., Ali, H. M., Kanwal, F., Aslam, M., Mustaqeem, M. Modified physical properties of Ni doped ZnO NPs as potential photocatalyst and antibacterial agents. Arab. J. Chem. 2023, 16, 105230; https://doi.org/10.1016/j.arabjc.2023.105230.Suche in Google Scholar

65. Wang, H., Liu, W., He, X., Zhang, P., Zhang, X., Xie, Y. An excitonic perspective on low-dimensional semiconductors for photocatalysis. J. Am. Chem. Soc. 2020, 142, 14007–14022; https://doi.org/10.1021/jacs.0c06966.Suche in Google Scholar PubMed

66. Ahmad, S., Aadil, M., Ejaz, S. R., Akhtar, M. U., Noor, H., Haider, S., Alsafari, I. A., Yasmin, G. Sol-gel synthesis of nanostructured ZnO/SrZnO2 with boosted antibacterial and photocatalytic activity. Ceram. Int. 2022, 48, 2394–2405; https://doi.org/10.1016/j.ceramint.2021.10.020.Suche in Google Scholar

67. Kousar, T., Aadil, M., Zulfiqar, S., Warsi, M. F., Ejaz, S. R., Elnaggar, A. Y., Fallatah, A. M., El-Bahy, S. M., Mahmood, F. Wet-chemical synthesis of nanostructured Ce-doped mixed metal ferrites for the effective removal of azo dyes from industrial discharges. Ceram. Int. 2022, 48, 11858–11868; https://doi.org/10.1016/j.ceramint.2022.01.057.Suche in Google Scholar

68. Kousar, T., Katubi, K. M., Zulfiqar, S., Alrowaili, Z., Ansari, M. Z., Al-Buriahi, M., Aadil, M., Hassan, W., Mahmood, F., Hussain, M. Synthesis of nanostructured gadolinium doped mixed ferrite: a novel catalyst for the mineralization of textile dyes. Ceram. Int. 2023, 49, 19641–19651; https://doi.org/10.1016/j.ceramint.2023.02.234.Suche in Google Scholar

69. Boutalbi, A., Mohammed, H. A., Meneceur, S., Eddine, L. S., Abdullah, J. A. A., Alharthi, F., Hasan, G. G. Photocatalytic dye degradation efficiency and reusability of potassium polyacrylate hydrogel loaded Ag@ ZnO nanocomposite. Transition Met. Chem. 2023, 48, 353–363; https://doi.org/10.1007/s11243-023-00548-5.Suche in Google Scholar

70. Fernando, J. F., Shortell, M. P., Firestein, K. L., Zhang, C., Larionov, K. V., Popov, Z. I., Sorokin, P. B., Bourgeois, L., Waclawik, E. R., Golberg, D. V. Photocatalysis with Pt–Au–ZnO and Au–ZnO hybrids: effect of charge accumulation and discharge properties of metal nanoparticles. Langmuir 2018, 34, 7334–7345; https://doi.org/10.1021/acs.langmuir.8b00401.Suche in Google Scholar PubMed

71. Subash, M., Chandrasekar, M., Panimalar, S., Inmozhi, C., Parasuraman, K., Uthrakumar, R., Kaviyarasu, K. Pseudo-first kinetics model of copper doping on the structural, magnetic, and photocatalytic activity of magnesium oxide nanoparticles for energy application. Biomass Convers. Biorefin. 2023, 13, 3427–3437; https://doi.org/10.1007/s13399-022-02993-1.Suche in Google Scholar

72. Mohammed, H. T., Alasedi, K. K., Ruyid, R., Hussein, S. A., Jarallah, A. L., Dahesh, Salwa M.A., Sultan, M. Q., Salman, Z. N., Bashar, B. S., Aldulaimi, A. K. O., Obaid, M. A. ZnO/Co3O4 nanocomposites: novel preparation, characterization, and their performance toward removal of antibiotics from wastewater. J. Nanostruct. 2022, 12, 503–509.Suche in Google Scholar

Received: 2023-10-05
Accepted: 2024-01-31
Published Online: 2024-02-19
Published in Print: 2024-09-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0379/html
Button zum nach oben scrollen