The assessment of pollutant waste generated by battery and its effect on the environment: a concise review
-
Ambrish Singh
, Kashif R. Ansari
, Ismat H. Ali
, Abdullah K. Alanazi , Muhammad Younas , Aeshah H. Alamri und Yuanhua Lin
Abstract
With annualized expansion rates close to 8 % in 2018 and a projected range of 18–30 % by 2030, wasted batteries are a continual economic and ecological concern due to the growing use of electronic gadgets. The improper preservation and handling of waste discharges are not regulated, which allows for their accumulation in public areas and the release of dangerous materials into the ecosystem at the landfill. To improve the energy properties and lifespan of batteries, current advancements in battery manufacturing mandate the application of novel materials for electrolytes and nanomaterials for cathode materials. Novel battery chemicals may further complicate recycling and containment efforts because it still needs to be determined how much of an influence they will have on the ecosystem. Only a few nations can now recycle mass-manufactured lithium batteries, making up barely 5 % of the more than 345,000 tonnes of garbage produced worldwide in 2018. To provide evidence for policy and legislation, this concise review intends to incorporate current describe and emergent battery pollutant, their adverse ecological aftermath, and ongoing diagnostic techniques.
Funding source: King Khalid University
Award Identifier / Grant number: Unassigned
Acknowledgments
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through a research group program under grant number R.G.P. 2/271/44.
-
Research ethics: Not applicable.
-
Author contribution: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors states no conflict of interest.
-
Research funding: The research is funded by Deanship of Scientific Research at King Khalid University under grant number R.G.P. 2/271/44.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Leba, M., Ionica, A., Dovleac, R., Dobra, R. Waste management system for batteries. Sustainability 2018, 10, 332. https://doi.org/10.3390/su10020332.Suche in Google Scholar
2. Mayyas, A., Steward, D., Mann, M. The case for recycling: overview and challenges in the material supply chain for automotive li-ion batteries. Sustain. Mater. Technol. 2019, 19, e00087. https://doi.org/10.1016/j.susmat.2018.e00087.Suche in Google Scholar
3. Boldrin, A., Hansen, S. F., Baun, A., Hartmann, N. I. B., Astrup, T. F. Environmental exposure assessment framework for nanoparticles in solid waste. J. Nanoparticle Res. 2014, 16, 2394. https://doi.org/10.1007/s11051-014-2394-2.Suche in Google Scholar PubMed PubMed Central
4(a). Shaikh, S., Thomas, K., Zuhair, S. An exploratory study of e-waste creation and disposal: upstream considerations. Resour. Conserv. Recycl. 2020, 155, 104662, https://doi.org/10.1016/j.resconrec.2019.104662.Suche in Google Scholar
(b) Farzana, R., Rajarao, R., Behera, P. R., Hassan, K., Sahajwalla, V. Zinc oxide nanoparticles from waste Zn-C battery via thermal route: characterization and properties, Nanomaterials 2018, 8, 717, https://doi.org/10.3390/nano8090717.Suche in Google Scholar PubMed PubMed Central
5. Guo, X., Song, Y., Nan, J. Flow evaluation of the leaching hazardous materials from spent nickel-cadmium batteries discarded in different water surroundings. Environ. Sci. Pollut. Control Ser. 2018, 25, 5514–5520. https://doi.org/10.1007/s11356-017-0923-0.Suche in Google Scholar PubMed
6. Kang, D. H. P., Chen, M., Ogunseitan, O. A. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environ. Sci. Technol. 2013, 47, 5495–5503. https://doi.org/10.1021/es400614y.Suche in Google Scholar PubMed PubMed Central
7. Wang, X., Gaustad, G., Babbitt, C. W., Bailey, C., Ganter, M. J., Landi, B. J. Economic and environmental characterization of an evolving Li-ion battery waste stream. J. Environ. Manag. 2014, 135, 126–134. https://doi.org/10.1016/j.jenvman.2014.01.021.Suche in Google Scholar PubMed
8. Joo, S. H., Zhao, D. Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: a review. J. Hazard. Mater. 2017, 322, 29–47. https://doi.org/10.1016/j.jhazmat.2016.02.068.Suche in Google Scholar PubMed
9. Liu, A., Ren, X. 8 – power ready for driving catalysis and sensing: nanomaterials designed for renewable energy storage. In Advanced Nanomaterials for Pollutant Sensing and Environmental Catalysis; Zhao, Q., Ed. Elsevier, 2020; pp. 307–346.10.1016/B978-0-12-814796-2.00008-3Suche in Google Scholar
10. Abbas, Q., Yousaf, B., Amina, A. M. U., Munir, M. A. M., El-Naggar, A., Rinklebe, J., Naushad, M. Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: a review. Environ. Int. 2020, 138, 105646. https://doi.org/10.1016/j.envint.2020.105646.Suche in Google Scholar PubMed
11. Dutta, T., Kim, K.-H., Deep, A., Szulejko, J. E., Vellingiri, K., Kumar, S., Kwon, E. E., Yun, S.-T. Recovery of nanomaterials from battery and electronic wastes: a new paradigm of environmental waste management. Renew. Sustain. Energy Rev. 2018, 82, 3694–3704. https://doi.org/10.1016/j.rser.2017.10.094.Suche in Google Scholar
12. Hamers, R. J. Energy storage materials as emerging nano-contaminants. Chem. Res. Toxicol. 2020, 33, 1074–1081. https://doi.org/10.1021/acs.chemrestox.0c00080.Suche in Google Scholar PubMed
13. De Marchi, L., Pretti, C., Gabriel, B., Marques, P. A. A. P., Freitas, R., Neto, V. An overview of graphene materials: properties, applications and toxicity on aquatic environments, Sci. Total Environ. 2018, 631–632, 1440–1456, https://doi.org/10.1016/j.scitotenv.2018.03.132.Suche in Google Scholar PubMed
14. He, K., Chen, G., Zeng, G., Peng, M., Huang, Z., Shi, J., Huang, T. Stability, transport and ecosystem effects of graphene in water and soil environments. Nanoscale 2017, 9, 5370–5388. https://doi.org/10.1039/C6NR09931A.Suche in Google Scholar
15. Amde, M., Liu, J.-F., Pang, L. Environmental application, fate, effects, and concerns of ionic liquids: a review. Environ. Sci. Technol. 2015, 49, 12611–12627. https://doi.org/10.1021/acs.est.5b03123.Suche in Google Scholar PubMed
16. Flieger, J., Flieger, M. Ionic liquids toxicity – benefits and threats. Int. J. Mol. Sci. 2020, 21, 6267, https://doi.org/10.3390/ijms21176267.Suche in Google Scholar PubMed PubMed Central
17. Iavicoli, I., Leso, V., Ricciardi, W., Hodson, L. L., Hoover, M. D. Opportunities and challenges of nanotechnology in the green economy. Environ. Health 2014, 13, 78. https://doi.org/10.1186/1476-069X-13-78.Suche in Google Scholar PubMed PubMed Central
18. Zhao, H., Lei, Y. 3D nanostructures for the next generation of high-performance nanodevices for electrochemical energy conversion and storage. Adv. Energy Mater. 2020, 10, 2001460. https://doi.org/10.1002/aenm.202001460.Suche in Google Scholar
19. Wang, Y., Li, H., He, P., Hosono, E., Zhou, H. Nano active materials for lithium-ion batteries. Nanoscale 2010, 2, 1294. https://doi.org/10.1039/c0nr00068j.Suche in Google Scholar PubMed
20. Thangadurai, P., Joicy, S., Beura, R., Santhosh Kumar, J., Chitrarasu, K. Emerging nanomaterials in energy and environmental science: an overview. In Emerging Nanostructured Materials for Energy and Environmental Science; Rajendran, S., Mu, N., Raju, K., Boukherroub, R., Eds.; Springer International Publishing, Vol. 23, 2019; pp. 1–49.10.1007/978-3-030-04474-9_1Suche in Google Scholar
21. Uyguner-Demirel, C. S., Demirel, B., Copty, N. K., Onay, T. T. Presence, behavior and fate of engineered nanomaterials in municipal solid waste landfills. In Nanotechnologies for Environmental Remediation: Applications and Implications; Lofrano, G., Libralato, G., Brown, J., Eds. Springer International Publishing, 2017, pp. 311–325,10.1007/978-3-319-53162-5_12Suche in Google Scholar
22. Younis, S. A., El-Fawal, E. M., Serp, P. Nano-wastes and the environment: potential challenges and opportunities of nano-waste management paradigm for greener nanotechnologies. In Handbook of Environmental Materials Management; Hussain, C. M., Ed. Springer International Publishing, 2018; pp. 1–72.10.1007/978-3-319-58538-3_53-1Suche in Google Scholar
23. Laborda, F., Bolea, E., Cepriá, G., Gómez, M. T., Jiménez, M. S., Pérez-Arantegui, J., Castillo, J. R. Detection, characterization and quantification of inorganic engineered nanomaterials: a review of techniques and methodological approaches for the analysis of complex samples. Anal. Chim. Acta 2016, 904, 10–32, https://doi.org/10.1016/j.aca.2015.11.008.Suche in Google Scholar PubMed
24. Shrivastava, M., Srivastav, A., Gandhi, S., Rao, S., Roychoudhury, A., Kumar, A., Singhal, R. K., Jha, S. K., Singh, S. D. Monitoring of engineered nanoparticles in soil – plant system: a review. Environ. Nanotechnol. Monitor. Manag. 2019, 11, 100218. https://doi.org/10.1016/j.enmm.2019.100218.Suche in Google Scholar
25. Sani-Kast, N., Scheringer, M., Slomberg, D., Labille, J., Praetorius, A., Ollivier, P., Hungerbühler, K. Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles. Sci. Total Environ. 2015, 535, 150–159. https://doi.org/10.1016/j.scitotenv.2014.12.025.Suche in Google Scholar PubMed
26. Bozich, J., Hang, M., Hamers, R., Klaper, R. Core chemistry influences the toxicity of multicomponent metal oxide nanomaterials, lithium nickel manganese cobalt oxide, and lithium cobalt oxide to Daphnia magna. Environ. Toxicol. Chem. 2017, 36, 2493–2502. https://doi.org/10.1002/etc.3791.Suche in Google Scholar PubMed
27. Hang, M. N., Gunsolus, I. L., Wayland, H., Melby, E. S., Mensch, A. C., Hurley, K. R., Pedersen, J. A., Haynes, C. L., Hamers, R. J. Impact of nanoscale lithium nickel manganese cobalt oxide (NMC) on the bacterium Shewanella oneidensis MR-1. Chem. Mater. 2016, 28, 1092–1100. https://doi.org/10.1021/acs.chemmater.5b04505.Suche in Google Scholar
28. Lin, D., Tian, X., Wu, F., Xing, B. Fate and transport of engineered nanomaterials in the environment. J. Environ. Qual. 2010, 39, 1896–1908. https://doi.org/10.2134/jeq2009.0423.Suche in Google Scholar PubMed
29. Gottschalk, F., Nowack, B. The release of engineered nanomaterials to the environment. J. Environ. Monit. 2011, 13, 1145. https://doi.org/10.1039/c0em00547a.Suche in Google Scholar PubMed
30. Peng, C., Zhang, W., Gao, H., Li, Y., Tong, X., Li, K., Zhu, X., Wang, Y., Chen, Y. Behavior and potential impacts of metal-based engineered nanoparticles in aquatic environments. Nanomaterials 2017. https://doi.org/10.3390/nano7010021.Suche in Google Scholar PubMed PubMed Central
31. Keller, A. A., Lazareva, A. Predicted releases of engineered nanomaterials: from global to regional to local. Environ. Sci. Technol. Lett 2014, 1, 65–70. https://doi.org/10.1021/ez400106t.Suche in Google Scholar
32. John, A. C., Küpper, M., Manders-Groot, A. M. M., Debray, B., Lacome, J. M., Kuhlbusch, T. A. J. Emissions and possible environmental Implication of engineered nanomaterials (ENMs) in the atmosphere. Atmosphere 2017, 8, 1–29. https://doi.org/10.3390/atmos8050084.Suche in Google Scholar
33. Wang, Z., Wu, Z., Bramnik, N., Mitra, S. Fabrication of high-performance flexible alkaline batteries by implementing multiwalled carbon nanotubes and copolymer separator. Adv. Mater. 2014b, 26, 970–976, https://doi.org/10.1002/adma.201304020.Suche in Google Scholar PubMed
34. Hossain, S., Abdalla, A. M., Suhaili, S. B. H., Kamal, I., Shaikh, S. P. S., Dawood, M. K., Azad, A. K. Nanostructured graphene materials utilization in fuel cells and batteries: a review. J. Energy Storage 2020, 29, 101386. https://doi.org/10.1016/j.est.2020.101386.Suche in Google Scholar
35. Part, F., Zecha, G., Causon, T., Sinner, E.-K., Huber-Humer, M. Current limitations and challenges in nanowaste detection, characterisation and monitoring. Waste Manag. 2015, 43, 407–420. https://doi.org/10.1016/j.wasman.2015.05.035.Suche in Google Scholar PubMed
36. Goodwin, D. G., Adeleye, A. S., Sung, L., Ho, K. T., Burgess, R. M., Petersen, E. J. Detection and quantification of graphene-family nanomaterials in the environment. Environ. Sci. Technol. 2018, 52, 4491–4513, https://doi.org/10.1021/acs.est.7b04938.Suche in Google Scholar PubMed PubMed Central
37. Cossutta, M., Vretenar, V., Centeno, T. A., Kotrusz, P., McKechnie, J., Pickering, S. J. A comparative life cycle assessment of graphene and activated carbon in a supercapacitor application. J. Clean. Prod. 2020, 242, 118468. https://doi.org/10.1016/j.jclepro.2019.118468.Suche in Google Scholar
38. Rüther, T., Bhatt, A. I., Best, A. S., Harris, K. R., Hollenkamp, A. F. Electrolytes for lithium (sodium) batteries based on ionic liquids: highlighting the key role played by the anion. Batter. Supercaps 2020, 3, 793–827. https://doi.org/10.1002/batt.202000022.Suche in Google Scholar
39. Jonsson, E. Ionic liquids as electrolytes for energy storage applications – a modelling perspective. Energy Storage Mater. 2020, 25, 827–835. https://doi.org/10.1016/j.ensm.2019.08.030.Suche in Google Scholar
40. Yang, G., Song, Y., Wang, Q., Zhang, L., Deng, L. Review of ionic liquids containing, polymer/inorganic hybrid electrolytes for lithium metal batteries. Mater. Des. 2020, 190, 108563. https://doi.org/10.1016/j.matdes.2020.108563.Suche in Google Scholar
41. Costa, S. P. F., Azevedo, A. M. O., Pinto, P. C. A. G., Saraiva, M. L. M. F. S. Environmental impact of ionic liquids: recent advances in (eco)toxicology and (bio)degradability. ChemSusChem 2017, 10, 2321–2347. https://doi.org/10.1002/cssc.201700261.Suche in Google Scholar PubMed
42. Flieger, J., Flieger, M. Ionic liquids toxicity – benefits and threats. Int. J. Mol. Sci. 2020, 21, 6267. https://doi.org/10.3390/ijms21176267.Suche in Google Scholar PubMed PubMed Central
43. Rüther, T., Bhatt, A. I., Best, A. S., Harris, K. R., Hollenkamp, A. F. Electrolytes for lithium (sodium) batteries based on ionic liquids: highlighting the key role played by the anion. Batt. Supercaps 2020, 3, 793–827; https://doi.org/10.1002/batt.202000022.Suche in Google Scholar
44. Leitch, A. C., Abdelghany, T. M., Probert, P. M., Dunn, M. P., Meyer, S. K., Palmer, J. M., Cooke, M. P., Blake, L. I., Morse, K., Rosenmai, A. K., Oskarsson, A., Bates, L., Figueiredo, R. S., Ibrahim, I., Wilson, C., Abdelkader, N. F., Jones, D. E., Blain, P. G., Wright, M. C. The toxicity of the methylimidazolium ionic liquids, with a focus on M8OI and hepatic effects. Food Chem. Toxicol. 2020, 136, 111069. https://doi.org/10.1016/j.fct.2019.111069.Suche in Google Scholar PubMed PubMed Central
45. Isigonis, P., Afantitis, A., Antunes, D., Bartonova, A., Beitollahi, A., Bohmer, N., Bouman, E., Chaudhry, Q., Cimpan, M. R., Cimpan, E., Doak, S., Dupin, D., Fedrigo, D., Fessard, V., Gromelski, M., Gutleb, A. C., Halappanavar, S., Hoet, P., Jeliazkova, N., Dusinska, M., Lindner, S., Linkov, I., Longhin, E. M., Lynch, I., Malsch, I., Marcomini, A., Mariussen, E., de la Fuente, J. M., Melagraki, G., Murphy, F., Neaves, M., Packroff, R., Pfuhler, S., Puzyn, T., Rahman, Q., Pran, E. R., Semenzin, E., Serchi, T., Steinbach, C., Trump, B., Vrček, I. V., Warheit, D., Wiesner, M. R., Willighagen, E. Risk governance of emerging technologies demonstrated in terms of its applicability to nanomaterials. Small 2020, 16, 2003303. https://doi.org/10.1002/smll.202003303.Suche in Google Scholar PubMed
46. Laux, P., Tentschert, J., Riebeling, C., Braeuning, A., Creutzenberg, O., Epp, A., Fessard, V., Haas, K.-H., Haase, A., Hund-Rinke, K., Jakubowski, N., Kearns, P., Lampen, A., Rauscher, H., Schoonjans, R., Stormer, A., Thielmann, A., Mühle, U., Luch, A. Nanomaterials: certain aspects of application, risk assessment and risk communication. Arch. Toxicol. 2018, 92, 121–141. https://doi.org/10.1007/s00204-017-2144-1.Suche in Google Scholar PubMed PubMed Central
47. Schwirn, K., Voelker, D., Galert, W., Quik, J., Tietjen, L. Environmental risk assessment of nanomaterials in the light of new obligations under the REACH regulation: which challenges remain and how to approach them? Integr. Environ. Assess. Manag. 2020, 16, 706–717. https://doi.org/10.1002/ieam.4267.Suche in Google Scholar PubMed PubMed Central
48. Guinee, J. B., Heijungs, R., Vijver, M. G., Peijnenburg, W. J. G. M. Setting the stage for debating the roles of risk assessment and life-cycle assessment of engineered nanomaterials. Nat. Nanotechnol. 2017, 12, 727–733. https://doi.org/10.1038/nnano.2017.135.Suche in Google Scholar PubMed
49. Johnston, J., Gonzalez-Rojano, N., Wilkinson, K. J., Xing, B. Key challenges for evaluation of the safety of engineered nanomaterials. NanoImpact 2020, 18, 100219. https://doi.org/10.1016/j.impact.2020.100219.Suche in Google Scholar
50. Oomen, A. G., Steinhauser, K. G., Bleeker, E. A. J., van Broekhuizen, F., Sips, A., Dekkers, S., Wijnhoven, S. W. P., Sayre, P. G. Risk assessment frameworks for nanomaterials: scope, link to regulations, applicability, and outline for future directions in view of needed increase in efficiency. NanoImpact 2018, 9, 1–13. https://doi.org/10.1016/j.impact.2017.09.001.Suche in Google Scholar
51. Gavrilescu, C.-M., Paraschiv, C., Horjinec, P., Sotropa, D.-M., Barbu, R.-M. The advantages and disadvantages of nanotechnology. Rom. J. Oral Rehabil. 2018, 10, 153–159.Suche in Google Scholar
52. He, X., Aker, W. G., Leszczynski, J., Hwang, H.-M. Using a holistic approach to assess the impact of engineered nanomaterials inducing toxicity in aquatic systems. J. Food Drug Anal. 2014, 22, 128–146. https://doi.org/10.1016/j.jfda.2014.01.011.Suche in Google Scholar PubMed PubMed Central
53. Tiple, A. D., Badwaik, V. J., Padwad, S. V., Chaudhary, R. G., Singh, N. B. A review on Nanotoxicology: aquatic environment and biological system. Mater. Today: Proc. 2020, 29, 1246–1250. https://doi.org/10.1016/j.matpr.2020.05.755.Suche in Google Scholar
54. Abbas, Q., Yousaf, B., Ullah, H., Ali, M. U., Ok, Y. S., Rinklebe, J. Environmental transformation and nano-toxicity of engineered nano-particles (ENPs) in aquatic and terrestrial organisms. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2523–2581. https://doi.org/10.1080/10643389.2019.1705721.Suche in Google Scholar
55. Biswas, J.-K., Sarkar, D. Nanopollution in the aquatic environment and ecotoxicity: no nano issue. Current Pollut. Rep. 2019, 5, 4–7. https://doi.org/10.1007/s40726-019-0104-5.Suche in Google Scholar
56. Fan, E., Li, L., Wang, Z., Lin, J., Huang, Y., Yao, Y., Chen, R., Wu, F. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem. Rev. 2020, 120, 7020–7063. https://doi.org/10.1021/acs.chemrev.9b00535.Suche in Google Scholar PubMed
57. Zeng, X., Li, J., Liu, L. Solving spent lithium-ion battery problems in China: opportunities and challenges. Renew. Sustain. Energy Rev. 2015, 52, 1759–1767. https://doi.org/10.1016/j.rser.2015.08.014.Suche in Google Scholar
58. Trump, B. D., Hristozov, D., Malloy, T., Linkov, I. Risk associated with engineered nanomaterials: different tools for different ways to govern. Nano Today 2018, 21, 9–13. https://doi.org/10.1016/j.nantod.2018.03.002.Suche in Google Scholar
59. Schauerman, C. M., Ganter, M. J., Gaustad, G., Babbitt, C. W., Raffaelle, R. P., Landi, B. J. Recycling single-wall carbon nanotube anodes from lithium ion batteries. J. Mater. Chem. 2012, 22, 12008–12015. https://doi.org/10.1039/c2jm31971c.Suche in Google Scholar
60. Patwa, A., Thiery, A., Lombard, F., Lilley, M. K. S., Boisset, C., Bramard, J. F., Bottero, J. Y., Barthelemy, P. Accumulation of nanoparticles in “jellyfish” mucus: a bio-inspired route to decontamination of nano-waste. Sci. Rep. 2015, 5, 1–8. https://doi.org/10.1038/srep11387.Suche in Google Scholar PubMed PubMed Central
61. Swift, T., Rehman, K., Surtees, A., Hoskins, R., Hickey, S. G. Segmental mobility studies of poly(N-isopropyl acrylamide) interactions with gold nanoparticles and its use as a thermally driven trapping system. Macromol. Rapid Commun. 2018, 39, 1–5. https://doi.org/10.1002/marc.201800090.Suche in Google Scholar PubMed
62. Kampe, S., Kaegi, R., Schlich, K., Wasmuth, C., Hollert, H., Schlechtriem, C. Silver nanoparticles in sewage sludge: bioavailability of sulfidized silver to the terrestrial isopod Porcellio scaber. Environ. Toxicol. Chem. 2018, 37, 1606–1613. https://doi.org/10.1002/etc.4102.Suche in Google Scholar PubMed
63. Poynton, H. C., Chen, C., Alexander, S. L., Major, K. M., Blalock, B. J., Unrine, J. M. Enhanced toxicity of environmentally transformed ZnO nanoparticles relative to Zn ions in the epibenthic amphipod Hyalella azteca. Environ. Sci. Nano 2019, 6, 325–340. https://doi.org/10.1039/C8EN00755A.Suche in Google Scholar
64. Georgantzopoulou, A., Almeida Carvalho, P., Vogelsang, C., Tilahun, M., Ndungu, K., Booth, A. M., Thomas, K. V., Macken, A. Ecotoxicological effects of transformed silver and titanium dioxide nanoparticles in the effluent from a lab-scale wastewater treatment system. Environ. Sci. Technol. 2018, 52, 9431–9441. https://doi.org/10.1021/acs.est.8b01663.Suche in Google Scholar PubMed
65. Lin, S., Taylor, A. A., Ji, Z., Chang, C. H., Kinsinger, N. M., Ueng, W., Walker, S. L., Nel, A. E. Understanding the transformation, speciation, and hazard potential of copper particles in a model septic tank system using zebrafish to monitor the effluent. ACS Nano 2015, 9, 2038–2048. https://doi.org/10.1021/nn507216f.Suche in Google Scholar PubMed PubMed Central
66. Dogra, Y., Arkill, K. P., Elgy, C., Stolpe, B., Lead, J., Valsami-Jones, E., Tyler, C. R., Galloway, T. S. Cerium oxide nanoparticles induce oxidative stress in the sediment-dwelling amphipod Corophium volutator. Nanotoxicology 2016, 10, 480–487. https://doi.org/10.3109/17435390.2015.1088587.Suche in Google Scholar PubMed
67. Fan, X., Wang, C., Wang, P., Hu, B., Wang, X. TiO2 nanoparticles in sediments: effect on the bioavailability of heavy metals in the freshwater bivalve Corbicula fluminea. J. Hazard. Mater. 2018, 342, 41–50. https://doi.org/10.1016/j.jhazmat.2017.07.041.Suche in Google Scholar PubMed
68. Abbas, Q., Liu, G., Yousaf, B., Ali, M. U., Ullah, H., Ahmed, R. Effects of biochar on uptake, acquisition and translocation of silver nanoparticles in rice (Oryza sativa L.) in relation to growth, photosynthetic traits and nutrients displacement. Environ. Pollut. 2019, 250, 728–736. https://doi.org/10.1016/j.envpol.2019.04.083.Suche in Google Scholar PubMed
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review Article
- The assessment of pollutant waste generated by battery and its effect on the environment: a concise review
- Original Papers
- Biosynthesis of ZnO/Ag nanocomposites heterostructure for efficient photocatalytic degradation of antibiotics and synthetic dyes
- Kinetics, equilibrium and thermodynamics investigations of polypyrrole and polyaniline composites with Oryza sativa biomass for the removal of Nitenpyram insecticide
- Remediation of pesticides, acetamiprid and imidacloprid from aqueous solutions using cellulose derived from sawdust of Populus nigra
- Rice husk composite with polyaniline, sodium alginate and polypyrrole: naphthalene adsorption kinetics, equilibrium and thermodynamic studies
- Graphene oxide composite as a novel corrosion inhibitor for N80 steel in 15 % HCl: experimental and quantum chemical examinations
- Molecular level interaction, molecular structure, chemical reactivity, electronic and topological exploration and docking studies of 1-acetyl-4-piperidinecarboxylic acid
- Exploring the dynamics of halogen and hydrogen bonds in halogenated coumarins
- Electrochemical sensing and detection of phosgene and thiophosgene chemical warfare agents (CWAs) by all-boron B38 fullerene analogue: a DFT insight
Artikel in diesem Heft
- Frontmatter
- Review Article
- The assessment of pollutant waste generated by battery and its effect on the environment: a concise review
- Original Papers
- Biosynthesis of ZnO/Ag nanocomposites heterostructure for efficient photocatalytic degradation of antibiotics and synthetic dyes
- Kinetics, equilibrium and thermodynamics investigations of polypyrrole and polyaniline composites with Oryza sativa biomass for the removal of Nitenpyram insecticide
- Remediation of pesticides, acetamiprid and imidacloprid from aqueous solutions using cellulose derived from sawdust of Populus nigra
- Rice husk composite with polyaniline, sodium alginate and polypyrrole: naphthalene adsorption kinetics, equilibrium and thermodynamic studies
- Graphene oxide composite as a novel corrosion inhibitor for N80 steel in 15 % HCl: experimental and quantum chemical examinations
- Molecular level interaction, molecular structure, chemical reactivity, electronic and topological exploration and docking studies of 1-acetyl-4-piperidinecarboxylic acid
- Exploring the dynamics of halogen and hydrogen bonds in halogenated coumarins
- Electrochemical sensing and detection of phosgene and thiophosgene chemical warfare agents (CWAs) by all-boron B38 fullerene analogue: a DFT insight