Startseite Naturwissenschaften The assessment of pollutant waste generated by battery and its effect on the environment: a concise review
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The assessment of pollutant waste generated by battery and its effect on the environment: a concise review

  • Ambrish Singh EMAIL logo , Kashif R. Ansari EMAIL logo , Ismat H. Ali , Abdullah K. Alanazi , Muhammad Younas , Aeshah H. Alamri und Yuanhua Lin EMAIL logo
Veröffentlicht/Copyright: 20. Februar 2024

Abstract

With annualized expansion rates close to 8 % in 2018 and a projected range of 18–30 % by 2030, wasted batteries are a continual economic and ecological concern due to the growing use of electronic gadgets. The improper preservation and handling of waste discharges are not regulated, which allows for their accumulation in public areas and the release of dangerous materials into the ecosystem at the landfill. To improve the energy properties and lifespan of batteries, current advancements in battery manufacturing mandate the application of novel materials for electrolytes and nanomaterials for cathode materials. Novel battery chemicals may further complicate recycling and containment efforts because it still needs to be determined how much of an influence they will have on the ecosystem. Only a few nations can now recycle mass-manufactured lithium batteries, making up barely 5 % of the more than 345,000 tonnes of garbage produced worldwide in 2018. To provide evidence for policy and legislation, this concise review intends to incorporate current describe and emergent battery pollutant, their adverse ecological aftermath, and ongoing diagnostic techniques.


Corresponding authors: Ambrish Singh, Department of Chemistry, Nagaland University, Lumami, Zunheboto 798627, Nagaland, India, E-mail: ; and Kashif R. Ansari and Yuanhua Lin, School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, Sichuan, China; and State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China, E-mail: (K. R. Ansari), (Y. Lin)

Funding source: King Khalid University

Award Identifier / Grant number: Unassigned

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through a research group program under grant number R.G.P. 2/271/44.

  1. Research ethics: Not applicable.

  2. Author contribution: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors states no conflict of interest.

  4. Research funding: The research is funded by Deanship of Scientific Research at King Khalid University under grant number R.G.P. 2/271/44.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Leba, M., Ionica, A., Dovleac, R., Dobra, R. Waste management system for batteries. Sustainability 2018, 10, 332. https://doi.org/10.3390/su10020332.Suche in Google Scholar

2. Mayyas, A., Steward, D., Mann, M. The case for recycling: overview and challenges in the material supply chain for automotive li-ion batteries. Sustain. Mater. Technol. 2019, 19, e00087. https://doi.org/10.1016/j.susmat.2018.e00087.Suche in Google Scholar

3. Boldrin, A., Hansen, S. F., Baun, A., Hartmann, N. I. B., Astrup, T. F. Environmental exposure assessment framework for nanoparticles in solid waste. J. Nanoparticle Res. 2014, 16, 2394. https://doi.org/10.1007/s11051-014-2394-2.Suche in Google Scholar PubMed PubMed Central

4(a). Shaikh, S., Thomas, K., Zuhair, S. An exploratory study of e-waste creation and disposal: upstream considerations. Resour. Conserv. Recycl. 2020, 155, 104662, https://doi.org/10.1016/j.resconrec.2019.104662.Suche in Google Scholar

(b) Farzana, R., Rajarao, R., Behera, P. R., Hassan, K., Sahajwalla, V. Zinc oxide nanoparticles from waste Zn-C battery via thermal route: characterization and properties, Nanomaterials 2018, 8, 717, https://doi.org/10.3390/nano8090717.Suche in Google Scholar PubMed PubMed Central

5. Guo, X., Song, Y., Nan, J. Flow evaluation of the leaching hazardous materials from spent nickel-cadmium batteries discarded in different water surroundings. Environ. Sci. Pollut. Control Ser. 2018, 25, 5514–5520. https://doi.org/10.1007/s11356-017-0923-0.Suche in Google Scholar PubMed

6. Kang, D. H. P., Chen, M., Ogunseitan, O. A. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environ. Sci. Technol. 2013, 47, 5495–5503. https://doi.org/10.1021/es400614y.Suche in Google Scholar PubMed PubMed Central

7. Wang, X., Gaustad, G., Babbitt, C. W., Bailey, C., Ganter, M. J., Landi, B. J. Economic and environmental characterization of an evolving Li-ion battery waste stream. J. Environ. Manag. 2014, 135, 126–134. https://doi.org/10.1016/j.jenvman.2014.01.021.Suche in Google Scholar PubMed

8. Joo, S. H., Zhao, D. Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: a review. J. Hazard. Mater. 2017, 322, 29–47. https://doi.org/10.1016/j.jhazmat.2016.02.068.Suche in Google Scholar PubMed

9. Liu, A., Ren, X. 8 – power ready for driving catalysis and sensing: nanomaterials designed for renewable energy storage. In Advanced Nanomaterials for Pollutant Sensing and Environmental Catalysis; Zhao, Q., Ed. Elsevier, 2020; pp. 307–346.10.1016/B978-0-12-814796-2.00008-3Suche in Google Scholar

10. Abbas, Q., Yousaf, B., Amina, A. M. U., Munir, M. A. M., El-Naggar, A., Rinklebe, J., Naushad, M. Transformation pathways and fate of engineered nanoparticles (ENPs) in distinct interactive environmental compartments: a review. Environ. Int. 2020, 138, 105646. https://doi.org/10.1016/j.envint.2020.105646.Suche in Google Scholar PubMed

11. Dutta, T., Kim, K.-H., Deep, A., Szulejko, J. E., Vellingiri, K., Kumar, S., Kwon, E. E., Yun, S.-T. Recovery of nanomaterials from battery and electronic wastes: a new paradigm of environmental waste management. Renew. Sustain. Energy Rev. 2018, 82, 3694–3704. https://doi.org/10.1016/j.rser.2017.10.094.Suche in Google Scholar

12. Hamers, R. J. Energy storage materials as emerging nano-contaminants. Chem. Res. Toxicol. 2020, 33, 1074–1081. https://doi.org/10.1021/acs.chemrestox.0c00080.Suche in Google Scholar PubMed

13. De Marchi, L., Pretti, C., Gabriel, B., Marques, P. A. A. P., Freitas, R., Neto, V. An overview of graphene materials: properties, applications and toxicity on aquatic environments, Sci. Total Environ. 2018, 631–632, 1440–1456, https://doi.org/10.1016/j.scitotenv.2018.03.132.Suche in Google Scholar PubMed

14. He, K., Chen, G., Zeng, G., Peng, M., Huang, Z., Shi, J., Huang, T. Stability, transport and ecosystem effects of graphene in water and soil environments. Nanoscale 2017, 9, 5370–5388. https://doi.org/10.1039/C6NR09931A.Suche in Google Scholar

15. Amde, M., Liu, J.-F., Pang, L. Environmental application, fate, effects, and concerns of ionic liquids: a review. Environ. Sci. Technol. 2015, 49, 12611–12627. https://doi.org/10.1021/acs.est.5b03123.Suche in Google Scholar PubMed

16. Flieger, J., Flieger, M. Ionic liquids toxicity – benefits and threats. Int. J. Mol. Sci. 2020, 21, 6267, https://doi.org/10.3390/ijms21176267.Suche in Google Scholar PubMed PubMed Central

17. Iavicoli, I., Leso, V., Ricciardi, W., Hodson, L. L., Hoover, M. D. Opportunities and challenges of nanotechnology in the green economy. Environ. Health 2014, 13, 78. https://doi.org/10.1186/1476-069X-13-78.Suche in Google Scholar PubMed PubMed Central

18. Zhao, H., Lei, Y. 3D nanostructures for the next generation of high-performance nanodevices for electrochemical energy conversion and storage. Adv. Energy Mater. 2020, 10, 2001460. https://doi.org/10.1002/aenm.202001460.Suche in Google Scholar

19. Wang, Y., Li, H., He, P., Hosono, E., Zhou, H. Nano active materials for lithium-ion batteries. Nanoscale 2010, 2, 1294. https://doi.org/10.1039/c0nr00068j.Suche in Google Scholar PubMed

20. Thangadurai, P., Joicy, S., Beura, R., Santhosh Kumar, J., Chitrarasu, K. Emerging nanomaterials in energy and environmental science: an overview. In Emerging Nanostructured Materials for Energy and Environmental Science; Rajendran, S., Mu, N., Raju, K., Boukherroub, R., Eds.; Springer International Publishing, Vol. 23, 2019; pp. 1–49.10.1007/978-3-030-04474-9_1Suche in Google Scholar

21. Uyguner-Demirel, C. S., Demirel, B., Copty, N. K., Onay, T. T. Presence, behavior and fate of engineered nanomaterials in municipal solid waste landfills. In Nanotechnologies for Environmental Remediation: Applications and Implications; Lofrano, G., Libralato, G., Brown, J., Eds. Springer International Publishing, 2017, pp. 311–325,10.1007/978-3-319-53162-5_12Suche in Google Scholar

22. Younis, S. A., El-Fawal, E. M., Serp, P. Nano-wastes and the environment: potential challenges and opportunities of nano-waste management paradigm for greener nanotechnologies. In Handbook of Environmental Materials Management; Hussain, C. M., Ed. Springer International Publishing, 2018; pp. 1–72.10.1007/978-3-319-58538-3_53-1Suche in Google Scholar

23. Laborda, F., Bolea, E., Cepriá, G., Gómez, M. T., Jiménez, M. S., Pérez-Arantegui, J., Castillo, J. R. Detection, characterization and quantification of inorganic engineered nanomaterials: a review of techniques and methodological approaches for the analysis of complex samples. Anal. Chim. Acta 2016, 904, 10–32, https://doi.org/10.1016/j.aca.2015.11.008.Suche in Google Scholar PubMed

24. Shrivastava, M., Srivastav, A., Gandhi, S., Rao, S., Roychoudhury, A., Kumar, A., Singhal, R. K., Jha, S. K., Singh, S. D. Monitoring of engineered nanoparticles in soil – plant system: a review. Environ. Nanotechnol. Monitor. Manag. 2019, 11, 100218. https://doi.org/10.1016/j.enmm.2019.100218.Suche in Google Scholar

25. Sani-Kast, N., Scheringer, M., Slomberg, D., Labille, J., Praetorius, A., Ollivier, P., Hungerbühler, K. Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles. Sci. Total Environ. 2015, 535, 150–159. https://doi.org/10.1016/j.scitotenv.2014.12.025.Suche in Google Scholar PubMed

26. Bozich, J., Hang, M., Hamers, R., Klaper, R. Core chemistry influences the toxicity of multicomponent metal oxide nanomaterials, lithium nickel manganese cobalt oxide, and lithium cobalt oxide to Daphnia magna. Environ. Toxicol. Chem. 2017, 36, 2493–2502. https://doi.org/10.1002/etc.3791.Suche in Google Scholar PubMed

27. Hang, M. N., Gunsolus, I. L., Wayland, H., Melby, E. S., Mensch, A. C., Hurley, K. R., Pedersen, J. A., Haynes, C. L., Hamers, R. J. Impact of nanoscale lithium nickel manganese cobalt oxide (NMC) on the bacterium Shewanella oneidensis MR-1. Chem. Mater. 2016, 28, 1092–1100. https://doi.org/10.1021/acs.chemmater.5b04505.Suche in Google Scholar

28. Lin, D., Tian, X., Wu, F., Xing, B. Fate and transport of engineered nanomaterials in the environment. J. Environ. Qual. 2010, 39, 1896–1908. https://doi.org/10.2134/jeq2009.0423.Suche in Google Scholar PubMed

29. Gottschalk, F., Nowack, B. The release of engineered nanomaterials to the environment. J. Environ. Monit. 2011, 13, 1145. https://doi.org/10.1039/c0em00547a.Suche in Google Scholar PubMed

30. Peng, C., Zhang, W., Gao, H., Li, Y., Tong, X., Li, K., Zhu, X., Wang, Y., Chen, Y. Behavior and potential impacts of metal-based engineered nanoparticles in aquatic environments. Nanomaterials 2017. https://doi.org/10.3390/nano7010021.Suche in Google Scholar PubMed PubMed Central

31. Keller, A. A., Lazareva, A. Predicted releases of engineered nanomaterials: from global to regional to local. Environ. Sci. Technol. Lett 2014, 1, 65–70. https://doi.org/10.1021/ez400106t.Suche in Google Scholar

32. John, A. C., Küpper, M., Manders-Groot, A. M. M., Debray, B., Lacome, J. M., Kuhlbusch, T. A. J. Emissions and possible environmental Implication of engineered nanomaterials (ENMs) in the atmosphere. Atmosphere 2017, 8, 1–29. https://doi.org/10.3390/atmos8050084.Suche in Google Scholar

33. Wang, Z., Wu, Z., Bramnik, N., Mitra, S. Fabrication of high-performance flexible alkaline batteries by implementing multiwalled carbon nanotubes and copolymer separator. Adv. Mater. 2014b, 26, 970–976, https://doi.org/10.1002/adma.201304020.Suche in Google Scholar PubMed

34. Hossain, S., Abdalla, A. M., Suhaili, S. B. H., Kamal, I., Shaikh, S. P. S., Dawood, M. K., Azad, A. K. Nanostructured graphene materials utilization in fuel cells and batteries: a review. J. Energy Storage 2020, 29, 101386. https://doi.org/10.1016/j.est.2020.101386.Suche in Google Scholar

35. Part, F., Zecha, G., Causon, T., Sinner, E.-K., Huber-Humer, M. Current limitations and challenges in nanowaste detection, characterisation and monitoring. Waste Manag. 2015, 43, 407–420. https://doi.org/10.1016/j.wasman.2015.05.035.Suche in Google Scholar PubMed

36. Goodwin, D. G., Adeleye, A. S., Sung, L., Ho, K. T., Burgess, R. M., Petersen, E. J. Detection and quantification of graphene-family nanomaterials in the environment. Environ. Sci. Technol. 2018, 52, 4491–4513, https://doi.org/10.1021/acs.est.7b04938.Suche in Google Scholar PubMed PubMed Central

37. Cossutta, M., Vretenar, V., Centeno, T. A., Kotrusz, P., McKechnie, J., Pickering, S. J. A comparative life cycle assessment of graphene and activated carbon in a supercapacitor application. J. Clean. Prod. 2020, 242, 118468. https://doi.org/10.1016/j.jclepro.2019.118468.Suche in Google Scholar

38. Rüther, T., Bhatt, A. I., Best, A. S., Harris, K. R., Hollenkamp, A. F. Electrolytes for lithium (sodium) batteries based on ionic liquids: highlighting the key role played by the anion. Batter. Supercaps 2020, 3, 793–827. https://doi.org/10.1002/batt.202000022.Suche in Google Scholar

39. Jonsson, E. Ionic liquids as electrolytes for energy storage applications – a modelling perspective. Energy Storage Mater. 2020, 25, 827–835. https://doi.org/10.1016/j.ensm.2019.08.030.Suche in Google Scholar

40. Yang, G., Song, Y., Wang, Q., Zhang, L., Deng, L. Review of ionic liquids containing, polymer/inorganic hybrid electrolytes for lithium metal batteries. Mater. Des. 2020, 190, 108563. https://doi.org/10.1016/j.matdes.2020.108563.Suche in Google Scholar

41. Costa, S. P. F., Azevedo, A. M. O., Pinto, P. C. A. G., Saraiva, M. L. M. F. S. Environmental impact of ionic liquids: recent advances in (eco)toxicology and (bio)degradability. ChemSusChem 2017, 10, 2321–2347. https://doi.org/10.1002/cssc.201700261.Suche in Google Scholar PubMed

42. Flieger, J., Flieger, M. Ionic liquids toxicity – benefits and threats. Int. J. Mol. Sci. 2020, 21, 6267. https://doi.org/10.3390/ijms21176267.Suche in Google Scholar PubMed PubMed Central

43. Rüther, T., Bhatt, A. I., Best, A. S., Harris, K. R., Hollenkamp, A. F. Electrolytes for lithium (sodium) batteries based on ionic liquids: highlighting the key role played by the anion. Batt. Supercaps 2020, 3, 793–827; https://doi.org/10.1002/batt.202000022.Suche in Google Scholar

44. Leitch, A. C., Abdelghany, T. M., Probert, P. M., Dunn, M. P., Meyer, S. K., Palmer, J. M., Cooke, M. P., Blake, L. I., Morse, K., Rosenmai, A. K., Oskarsson, A., Bates, L., Figueiredo, R. S., Ibrahim, I., Wilson, C., Abdelkader, N. F., Jones, D. E., Blain, P. G., Wright, M. C. The toxicity of the methylimidazolium ionic liquids, with a focus on M8OI and hepatic effects. Food Chem. Toxicol. 2020, 136, 111069. https://doi.org/10.1016/j.fct.2019.111069.Suche in Google Scholar PubMed PubMed Central

45. Isigonis, P., Afantitis, A., Antunes, D., Bartonova, A., Beitollahi, A., Bohmer, N., Bouman, E., Chaudhry, Q., Cimpan, M. R., Cimpan, E., Doak, S., Dupin, D., Fedrigo, D., Fessard, V., Gromelski, M., Gutleb, A. C., Halappanavar, S., Hoet, P., Jeliazkova, N., Dusinska, M., Lindner, S., Linkov, I., Longhin, E. M., Lynch, I., Malsch, I., Marcomini, A., Mariussen, E., de la Fuente, J. M., Melagraki, G., Murphy, F., Neaves, M., Packroff, R., Pfuhler, S., Puzyn, T., Rahman, Q., Pran, E. R., Semenzin, E., Serchi, T., Steinbach, C., Trump, B., Vrček, I. V., Warheit, D., Wiesner, M. R., Willighagen, E. Risk governance of emerging technologies demonstrated in terms of its applicability to nanomaterials. Small 2020, 16, 2003303. https://doi.org/10.1002/smll.202003303.Suche in Google Scholar PubMed

46. Laux, P., Tentschert, J., Riebeling, C., Braeuning, A., Creutzenberg, O., Epp, A., Fessard, V., Haas, K.-H., Haase, A., Hund-Rinke, K., Jakubowski, N., Kearns, P., Lampen, A., Rauscher, H., Schoonjans, R., Stormer, A., Thielmann, A., Mühle, U., Luch, A. Nanomaterials: certain aspects of application, risk assessment and risk communication. Arch. Toxicol. 2018, 92, 121–141. https://doi.org/10.1007/s00204-017-2144-1.Suche in Google Scholar PubMed PubMed Central

47. Schwirn, K., Voelker, D., Galert, W., Quik, J., Tietjen, L. Environmental risk assessment of nanomaterials in the light of new obligations under the REACH regulation: which challenges remain and how to approach them? Integr. Environ. Assess. Manag. 2020, 16, 706–717. https://doi.org/10.1002/ieam.4267.Suche in Google Scholar PubMed PubMed Central

48. Guinee, J. B., Heijungs, R., Vijver, M. G., Peijnenburg, W. J. G. M. Setting the stage for debating the roles of risk assessment and life-cycle assessment of engineered nanomaterials. Nat. Nanotechnol. 2017, 12, 727–733. https://doi.org/10.1038/nnano.2017.135.Suche in Google Scholar PubMed

49. Johnston, J., Gonzalez-Rojano, N., Wilkinson, K. J., Xing, B. Key challenges for evaluation of the safety of engineered nanomaterials. NanoImpact 2020, 18, 100219. https://doi.org/10.1016/j.impact.2020.100219.Suche in Google Scholar

50. Oomen, A. G., Steinhauser, K. G., Bleeker, E. A. J., van Broekhuizen, F., Sips, A., Dekkers, S., Wijnhoven, S. W. P., Sayre, P. G. Risk assessment frameworks for nanomaterials: scope, link to regulations, applicability, and outline for future directions in view of needed increase in efficiency. NanoImpact 2018, 9, 1–13. https://doi.org/10.1016/j.impact.2017.09.001.Suche in Google Scholar

51. Gavrilescu, C.-M., Paraschiv, C., Horjinec, P., Sotropa, D.-M., Barbu, R.-M. The advantages and disadvantages of nanotechnology. Rom. J. Oral Rehabil. 2018, 10, 153–159.Suche in Google Scholar

52. He, X., Aker, W. G., Leszczynski, J., Hwang, H.-M. Using a holistic approach to assess the impact of engineered nanomaterials inducing toxicity in aquatic systems. J. Food Drug Anal. 2014, 22, 128–146. https://doi.org/10.1016/j.jfda.2014.01.011.Suche in Google Scholar PubMed PubMed Central

53. Tiple, A. D., Badwaik, V. J., Padwad, S. V., Chaudhary, R. G., Singh, N. B. A review on Nanotoxicology: aquatic environment and biological system. Mater. Today: Proc. 2020, 29, 1246–1250. https://doi.org/10.1016/j.matpr.2020.05.755.Suche in Google Scholar

54. Abbas, Q., Yousaf, B., Ullah, H., Ali, M. U., Ok, Y. S., Rinklebe, J. Environmental transformation and nano-toxicity of engineered nano-particles (ENPs) in aquatic and terrestrial organisms. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2523–2581. https://doi.org/10.1080/10643389.2019.1705721.Suche in Google Scholar

55. Biswas, J.-K., Sarkar, D. Nanopollution in the aquatic environment and ecotoxicity: no nano issue. Current Pollut. Rep. 2019, 5, 4–7. https://doi.org/10.1007/s40726-019-0104-5.Suche in Google Scholar

56. Fan, E., Li, L., Wang, Z., Lin, J., Huang, Y., Yao, Y., Chen, R., Wu, F. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem. Rev. 2020, 120, 7020–7063. https://doi.org/10.1021/acs.chemrev.9b00535.Suche in Google Scholar PubMed

57. Zeng, X., Li, J., Liu, L. Solving spent lithium-ion battery problems in China: opportunities and challenges. Renew. Sustain. Energy Rev. 2015, 52, 1759–1767. https://doi.org/10.1016/j.rser.2015.08.014.Suche in Google Scholar

58. Trump, B. D., Hristozov, D., Malloy, T., Linkov, I. Risk associated with engineered nanomaterials: different tools for different ways to govern. Nano Today 2018, 21, 9–13. https://doi.org/10.1016/j.nantod.2018.03.002.Suche in Google Scholar

59. Schauerman, C. M., Ganter, M. J., Gaustad, G., Babbitt, C. W., Raffaelle, R. P., Landi, B. J. Recycling single-wall carbon nanotube anodes from lithium ion batteries. J. Mater. Chem. 2012, 22, 12008–12015. https://doi.org/10.1039/c2jm31971c.Suche in Google Scholar

60. Patwa, A., Thiery, A., Lombard, F., Lilley, M. K. S., Boisset, C., Bramard, J. F., Bottero, J. Y., Barthelemy, P. Accumulation of nanoparticles in “jellyfish” mucus: a bio-inspired route to decontamination of nano-waste. Sci. Rep. 2015, 5, 1–8. https://doi.org/10.1038/srep11387.Suche in Google Scholar PubMed PubMed Central

61. Swift, T., Rehman, K., Surtees, A., Hoskins, R., Hickey, S. G. Segmental mobility studies of poly(N-isopropyl acrylamide) interactions with gold nanoparticles and its use as a thermally driven trapping system. Macromol. Rapid Commun. 2018, 39, 1–5. https://doi.org/10.1002/marc.201800090.Suche in Google Scholar PubMed

62. Kampe, S., Kaegi, R., Schlich, K., Wasmuth, C., Hollert, H., Schlechtriem, C. Silver nanoparticles in sewage sludge: bioavailability of sulfidized silver to the terrestrial isopod Porcellio scaber. Environ. Toxicol. Chem. 2018, 37, 1606–1613. https://doi.org/10.1002/etc.4102.Suche in Google Scholar PubMed

63. Poynton, H. C., Chen, C., Alexander, S. L., Major, K. M., Blalock, B. J., Unrine, J. M. Enhanced toxicity of environmentally transformed ZnO nanoparticles relative to Zn ions in the epibenthic amphipod Hyalella azteca. Environ. Sci. Nano 2019, 6, 325–340. https://doi.org/10.1039/C8EN00755A.Suche in Google Scholar

64. Georgantzopoulou, A., Almeida Carvalho, P., Vogelsang, C., Tilahun, M., Ndungu, K., Booth, A. M., Thomas, K. V., Macken, A. Ecotoxicological effects of transformed silver and titanium dioxide nanoparticles in the effluent from a lab-scale wastewater treatment system. Environ. Sci. Technol. 2018, 52, 9431–9441. https://doi.org/10.1021/acs.est.8b01663.Suche in Google Scholar PubMed

65. Lin, S., Taylor, A. A., Ji, Z., Chang, C. H., Kinsinger, N. M., Ueng, W., Walker, S. L., Nel, A. E. Understanding the transformation, speciation, and hazard potential of copper particles in a model septic tank system using zebrafish to monitor the effluent. ACS Nano 2015, 9, 2038–2048. https://doi.org/10.1021/nn507216f.Suche in Google Scholar PubMed PubMed Central

66. Dogra, Y., Arkill, K. P., Elgy, C., Stolpe, B., Lead, J., Valsami-Jones, E., Tyler, C. R., Galloway, T. S. Cerium oxide nanoparticles induce oxidative stress in the sediment-dwelling amphipod Corophium volutator. Nanotoxicology 2016, 10, 480–487. https://doi.org/10.3109/17435390.2015.1088587.Suche in Google Scholar PubMed

67. Fan, X., Wang, C., Wang, P., Hu, B., Wang, X. TiO2 nanoparticles in sediments: effect on the bioavailability of heavy metals in the freshwater bivalve Corbicula fluminea. J. Hazard. Mater. 2018, 342, 41–50. https://doi.org/10.1016/j.jhazmat.2017.07.041.Suche in Google Scholar PubMed

68. Abbas, Q., Liu, G., Yousaf, B., Ali, M. U., Ullah, H., Ahmed, R. Effects of biochar on uptake, acquisition and translocation of silver nanoparticles in rice (Oryza sativa L.) in relation to growth, photosynthetic traits and nutrients displacement. Environ. Pollut. 2019, 250, 728–736. https://doi.org/10.1016/j.envpol.2019.04.083.Suche in Google Scholar PubMed

Received: 2023-10-13
Accepted: 2024-01-24
Published Online: 2024-02-20
Published in Print: 2024-09-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0388/pdf
Button zum nach oben scrollen