Polypropylene pyrolysis kinetics under isothermal and non-isothermal conditions: a comparative analysis
-
Jan Nisar
, Muhammad A. Khan , Ghulam Ali , Munawar Iqbal, Muhammad Imran Din
, Zaib Hussain , Ijaz A. Bhatti , Nada S. Al-Kadhi und Fowzia S. Alamro
Abstract
The kinetics of polypropylene pyrolysis has been studied under isothermal and non-isothermal conditions using Arrhenius and Kissinger–Akahira–Sunose (KAS) equations. Under isothermal conditions, applying first order kinetic model, activation energy (Ea) and pre-exponential factor (A) were investigated and observed as 119.7 kJ mol−1 and 1.2 × 1010 min−1, while in case of non-isothermal kinetics using Kissinger–Akahira–Sunose method, the average Ea and A were found to be 91.23 kJ mol−1 and 2.3 × 107 min−1, respectively. A comparison among the isothermal and non-isothermal reactions was made on the basis of kinetics parameters. The results from both the methods showed trivial variation in kinetic parameters of the pyrolysis reaction which may be due to two major reasons. Firstly, the selection of the kinetic model applied and secondly the inconsistency due to various experimental conditions used which can be reduced at optimized conditions. As the disposal of plastic materials need reliable kinetics information to model their decomposition reactions, therefore, the kinetics data thus obtained from pyrolysis reaction of model polypropylene will help in the utilization of polypropylene waste as energy source on industrial scale.
Acknowledgments
The assistance of Higher Education Commission, Pakistan through grant No. 20-1491 is highly appreciated. The authors extend their sincere appreciation to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R85), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
-
Research funding: The assistance of Higher Education Commission, Pakistan through grant No. 20-1491 is highly appreciated. This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R85), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
-
Conflict of interest statement: Authors have no conflicts of interest.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
References
1. Aryan, Y., Yadav, P., Samadder, S. R. J. Clean. Prod. 2019, 211, 1268–1283; https://doi.org/10.1016/j.jclepro.2018.11.236.Suche in Google Scholar
2. Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., Law, K. L. Science 2015, 347, 768–771; https://doi.org/10.1126/science.1260352.Suche in Google Scholar
3. Wright, S. L., Thompson, R. C., Galloway, T. S. Environ. Pollut. 2013, 178, 483–492; https://doi.org/10.1016/j.envpol.2013.02.031.Suche in Google Scholar
4. Kumar, A., Samadder, S., Kumar, N., Singh, C. Waste Manag. 2018, 79, 781–790; https://doi.org/10.1016/j.wasman.2018.08.045.Suche in Google Scholar
5. Ali, G., Nisar, J., Iqbal, M., Shah, A., Abbas, M., Shah, M. R., Rashid, U., Bhatti, I. A., Khan, R. A., Shah, F. Waste Manag. Res. 2020, 38, 202–212; https://doi.org/10.1177/0734242x19865339.Suche in Google Scholar
6. Nisar, J., Khan, M. S., Ali, G., Shah, A., Khan, R. A., Shah, F., Sherazi, S. T. H., Iqbal, M. J. Chem. Soc. Pakistan 2019, 41, 779.10.52568/000798/JCSP/41.05.2019Suche in Google Scholar
7. Nisar, J., Khan, Y., Ali, G., Shah, A., Farooqi, Z. H., Iqbal, M., Ashiq, M. N. J. Polym. Eng. 2021, 8, 646–653; https://doi.org/10.1515/polyeng-2021-0002.Suche in Google Scholar
8. Khoo, H. H., Tan, L. L., Tan, R. B. Waste Manag. 2012, 32, 890–900.10.1016/j.wasman.2011.12.010Suche in Google Scholar
9. Hinshaw, G., Trenholm, A. Waste Manag. 2001, 21, 471–475; https://doi.org/10.1016/s0956-053x(00)00131-8.Suche in Google Scholar
10. Nisar, J., Ali, G., Shah, A., Iqbal, M., Khan, R. A., Anwar, F., Ullah, R., Akhter, M. S. Waste Manag. 2019, 88, 236–247.10.1016/j.wasman.2019.03.035Suche in Google Scholar PubMed
11. Kadapure, S. A., Arush, K., Sagar, C., Shreshtha, S., Sangeeta, M., Sukanya, J., Devdatt, R., Sabhya, S., Navya, B., Amit, T. Energy Sources, Part A Recovery, Util. Environ. Eff. 2016, 38, 2942–2948; https://doi.org/10.1080/15567036.2015.1120822.Suche in Google Scholar
12. Kim, M., Buonomo, E., Bonelli, P., Cukierman, A. Energy Sources, Part A Recovery, Util. Environ. Eff. 2010, 32, 1207–1214; https://doi.org/10.1080/15567030802665992.Suche in Google Scholar
13. Zhang, H., Ding, F., Luo, C., Chen, X. Energy Sources, Part A Recovery, Util. Environ. Eff. 2015, 37, 1612–1619; https://doi.org/10.1080/15567036.2011.631974.Suche in Google Scholar
14. La Mantia, F. Handbook of Plastics Recycling; iSmithers Rapra Publishing: Shrewsbury, UK, 2002.Suche in Google Scholar
15. Coats, E. R., Loge, F. J., Wolcott, M. P., Englund, K., McDonald, A. G. Bioresour. Technol. 2008, 99, 2680–2686; https://doi.org/10.1016/j.biortech.2007.03.065.Suche in Google Scholar
16. Mohanty, A., Misra, M., Hinrichsen, G. Macromol. Mater. Eng. 2000, 276, 1–24; https://doi.org/10.1002/(sici)1439-2054(20000301)276:1<1::aid-mame1>3.0.co;2-w.10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-WSuche in Google Scholar
17. Al-Salem, S., Lettieri, P., Baeyens, J. Waste Manag. 2009, 29, 2625–2643; https://doi.org/10.1016/j.wasman.2009.06.004.Suche in Google Scholar
18. Nisar, J., Khan, M. A., Ali, G., Iqbal, M., Shah, A., Shah, M. R., Sherazi, S. T. H., Shah, L. A., Rehman, N. U. J. Polym. Eng. 2019, 39, 785–793; https://doi.org/10.1515/polyeng-2019-0077.Suche in Google Scholar
19. Gopinath, S., Devan, P., Pitchandi, K. RSC Adv. 2020, 10, 37266–37279; https://doi.org/10.1039/d0ra07073d.Suche in Google Scholar
20. Gopinath, S., Devan, P. Optimization and Prediction of reaction parameters of plastic Pyrolysis oil production using Taguchi Method. J. Chem. Chem. Eng. 2020, 39, 91–103.Suche in Google Scholar
21. Durmuş, A., Koç, S. N., Pozan, G. S., Kaşgöz, A. Appl. Catal. B Environ. 2005, 61, 316–322; https://doi.org/10.1016/j.apcatb.2005.06.009.Suche in Google Scholar
22. Marcilla, A., Gomez, A., Reyes-Labarta, J., Giner, A., Hernández, F. J. Anal. Appl. Pyrol. 2003, 68, 467–480; https://doi.org/10.1016/s0165-2370(03)00036-6.Suche in Google Scholar
23. Lin, Y.-H., Yang, M.-H., Yeh, T.-F., Ger, M.-D. Polym. Degrad. Stabil. 2004, 86, 121–128; https://doi.org/10.1016/j.polymdegradstab.2004.02.015.Suche in Google Scholar
24. Ceamanos, J., Mastral, J., Millera, A., Aldea, M. J. Anal. Appl. Pyrol. 2002, 65, 93–110; https://doi.org/10.1016/s0165-2370(01)00183-8.Suche in Google Scholar
25. Galwey, A. K., Brown, M. E. Thermochim. Acta 2002, 386, 91–98; https://doi.org/10.1016/s0040-6031(01)00769-9.Suche in Google Scholar
26. Ozawa, T. Bull. Chem. Soc. Jpn. 1965, 38, 1881–1886; https://doi.org/10.1246/bcsj.38.1881.Suche in Google Scholar
27. Fischer, P. E., Jou, C. S., Gokalgandhi, S. S. Ind. Eng. Chem. Res. 1987, 26, 1037–1040; https://doi.org/10.1021/ie00065a031.Suche in Google Scholar
28. Westerhout, R., Waanders, J., Kuipers, J., van Swaaij, W. P. M. Ind. Eng. Chem. Res. 1997, 36, 1955–1964; https://doi.org/10.1021/ie960501m.Suche in Google Scholar
29. Kissinger, H. E. Anal. Chem. 1957, 29, 1702–1706; https://doi.org/10.1021/ac60131a045.Suche in Google Scholar
30. Akahira, T., Sunose, T. Res Rep Chiba Inst Technol 1971, 16, 22–31.Suche in Google Scholar
31. Aguado, R., Olazar, M., Gaisán, B., Prieto, R., Bilbao, J. Ind. Eng. Chem. Res. 2002, 41, 4559–4566; https://doi.org/10.1021/ie0201260.Suche in Google Scholar
32. Encinar, J., González, J. Fuel Process. Technol. 2008, 89, 678–686; https://doi.org/10.1016/j.fuproc.2007.12.011.Suche in Google Scholar
33. Paik, P., Kar, K. K. Polym. Degrad. Stabil. 2008, 93, 24–35; https://doi.org/10.1016/j.polymdegradstab.2007.11.001.Suche in Google Scholar
34. Rantuch, P., Kačíková, D., Nagypál, B. European Journal of Environmental and Safety Sciences 2014, 2, 12–18.Suche in Google Scholar
35. Lecouvet, B., Bourbigot, S., Sclavons, M., Bailly, C. Polym. Degrad. Stabil. 2012, 97, 1745–1754; https://doi.org/10.1016/j.polymdegradstab.2012.06.022.Suche in Google Scholar
36. Fereidoon, A., Hemmati, M., Kordani, N., Kameli, M., Ghorbanzadeh Ahangari, M., Sharifi, N. J. Macromol. Sci., Part B: Physics 2011, 50, 665–678; https://doi.org/10.1080/00222341003784881.Suche in Google Scholar
37. Nisar, J., Khan, M. A., Iqbal, M., Shah, A., Khan, R. A., Sayed, M., Mahmood, T. Adv. Polym. Technol. 2018, 37, 1168–1175; https://doi.org/10.1002/adv.21776.Suche in Google Scholar
38. Chan, J., Balke, S. Polym. Degrad. Stabil. 1997, 57, 113–125; https://doi.org/10.1016/s0141-3910(96)00158-9.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- A new strategy for cathodic protection of steel in fresh water using an aluminum electrode as an impressed current anode: a case study
- Insights into the thermal decomposition of organometallic compound ferrocene carboxaldehyde as precursor for hematite nanoparticles synthesis
- Polypropylene pyrolysis kinetics under isothermal and non-isothermal conditions: a comparative analysis
- Size controlled synthesis of silver nanoparticles: a comparison of modified Turkevich and BRUST methods
- Green synthesis of iron nanoparticles and photocatalytic activity evaluation for the degradation of methylene blue dye
- Microwave assisted green synthesis of ZnO nanoparticles using Rumex dentatus leaf extract: photocatalytic and antibacterial potential evaluation
- Extraction of copper ions from aqueous medium by microgel particles for in-situ fabrication of copper nanoparticles to degrade toxic dyes
- Adsorption of copper ions in water by adipic dihydrazide-modified kapok fibers
Artikel in diesem Heft
- Frontmatter
- Original Papers
- A new strategy for cathodic protection of steel in fresh water using an aluminum electrode as an impressed current anode: a case study
- Insights into the thermal decomposition of organometallic compound ferrocene carboxaldehyde as precursor for hematite nanoparticles synthesis
- Polypropylene pyrolysis kinetics under isothermal and non-isothermal conditions: a comparative analysis
- Size controlled synthesis of silver nanoparticles: a comparison of modified Turkevich and BRUST methods
- Green synthesis of iron nanoparticles and photocatalytic activity evaluation for the degradation of methylene blue dye
- Microwave assisted green synthesis of ZnO nanoparticles using Rumex dentatus leaf extract: photocatalytic and antibacterial potential evaluation
- Extraction of copper ions from aqueous medium by microgel particles for in-situ fabrication of copper nanoparticles to degrade toxic dyes
- Adsorption of copper ions in water by adipic dihydrazide-modified kapok fibers