Startseite Naturwissenschaften Polypropylene pyrolysis kinetics under isothermal and non-isothermal conditions: a comparative analysis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Polypropylene pyrolysis kinetics under isothermal and non-isothermal conditions: a comparative analysis

  • Jan Nisar , Muhammad A. Khan , Ghulam Ali , Munawar Iqbal EMAIL logo , Muhammad Imran Din , Zaib Hussain , Ijaz A. Bhatti , Nada S. Al-Kadhi und Fowzia S. Alamro
Veröffentlicht/Copyright: 5. Juli 2022

Abstract

The kinetics of polypropylene pyrolysis has been studied under isothermal and non-isothermal conditions using Arrhenius and Kissinger–Akahira–Sunose (KAS) equations. Under isothermal conditions, applying first order kinetic model, activation energy (Ea) and pre-exponential factor (A) were investigated and observed as 119.7 kJ mol−1 and 1.2 × 1010 min−1, while in case of non-isothermal kinetics using Kissinger–Akahira–Sunose method, the average Ea and A were found to be 91.23 kJ mol−1 and 2.3 × 107 min−1, respectively. A comparison among the isothermal and non-isothermal reactions was made on the basis of kinetics parameters. The results from both the methods showed trivial variation in kinetic parameters of the pyrolysis reaction which may be due to two major reasons. Firstly, the selection of the kinetic model applied and secondly the inconsistency due to various experimental conditions used which can be reduced at optimized conditions. As the disposal of plastic materials need reliable kinetics information to model their decomposition reactions, therefore, the kinetics data thus obtained from pyrolysis reaction of model polypropylene will help in the utilization of polypropylene waste as energy source on industrial scale.


Corresponding author: Munawar Iqbal, Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan, E-mail:

Acknowledgments

The assistance of Higher Education Commission, Pakistan through grant No. 20-1491 is highly appreciated. The authors extend their sincere appreciation to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R85), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  1. Research funding: The assistance of Higher Education Commission, Pakistan through grant No. 20-1491 is highly appreciated. This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R85), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  2. Conflict of interest statement: Authors have no conflicts of interest.

  3. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

References

1. Aryan, Y., Yadav, P., Samadder, S. R. J. Clean. Prod. 2019, 211, 1268–1283; https://doi.org/10.1016/j.jclepro.2018.11.236.Suche in Google Scholar

2. Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., Law, K. L. Science 2015, 347, 768–771; https://doi.org/10.1126/science.1260352.Suche in Google Scholar

3. Wright, S. L., Thompson, R. C., Galloway, T. S. Environ. Pollut. 2013, 178, 483–492; https://doi.org/10.1016/j.envpol.2013.02.031.Suche in Google Scholar

4. Kumar, A., Samadder, S., Kumar, N., Singh, C. Waste Manag. 2018, 79, 781–790; https://doi.org/10.1016/j.wasman.2018.08.045.Suche in Google Scholar

5. Ali, G., Nisar, J., Iqbal, M., Shah, A., Abbas, M., Shah, M. R., Rashid, U., Bhatti, I. A., Khan, R. A., Shah, F. Waste Manag. Res. 2020, 38, 202–212; https://doi.org/10.1177/0734242x19865339.Suche in Google Scholar

6. Nisar, J., Khan, M. S., Ali, G., Shah, A., Khan, R. A., Shah, F., Sherazi, S. T. H., Iqbal, M. J. Chem. Soc. Pakistan 2019, 41, 779.10.52568/000798/JCSP/41.05.2019Suche in Google Scholar

7. Nisar, J., Khan, Y., Ali, G., Shah, A., Farooqi, Z. H., Iqbal, M., Ashiq, M. N. J. Polym. Eng. 2021, 8, 646–653; https://doi.org/10.1515/polyeng-2021-0002.Suche in Google Scholar

8. Khoo, H. H., Tan, L. L., Tan, R. B. Waste Manag. 2012, 32, 890–900.10.1016/j.wasman.2011.12.010Suche in Google Scholar

9. Hinshaw, G., Trenholm, A. Waste Manag. 2001, 21, 471–475; https://doi.org/10.1016/s0956-053x(00)00131-8.Suche in Google Scholar

10. Nisar, J., Ali, G., Shah, A., Iqbal, M., Khan, R. A., Anwar, F., Ullah, R., Akhter, M. S. Waste Manag. 2019, 88, 236–247.10.1016/j.wasman.2019.03.035Suche in Google Scholar PubMed

11. Kadapure, S. A., Arush, K., Sagar, C., Shreshtha, S., Sangeeta, M., Sukanya, J., Devdatt, R., Sabhya, S., Navya, B., Amit, T. Energy Sources, Part A Recovery, Util. Environ. Eff. 2016, 38, 2942–2948; https://doi.org/10.1080/15567036.2015.1120822.Suche in Google Scholar

12. Kim, M., Buonomo, E., Bonelli, P., Cukierman, A. Energy Sources, Part A Recovery, Util. Environ. Eff. 2010, 32, 1207–1214; https://doi.org/10.1080/15567030802665992.Suche in Google Scholar

13. Zhang, H., Ding, F., Luo, C., Chen, X. Energy Sources, Part A Recovery, Util. Environ. Eff. 2015, 37, 1612–1619; https://doi.org/10.1080/15567036.2011.631974.Suche in Google Scholar

14. La Mantia, F. Handbook of Plastics Recycling; iSmithers Rapra Publishing: Shrewsbury, UK, 2002.Suche in Google Scholar

15. Coats, E. R., Loge, F. J., Wolcott, M. P., Englund, K., McDonald, A. G. Bioresour. Technol. 2008, 99, 2680–2686; https://doi.org/10.1016/j.biortech.2007.03.065.Suche in Google Scholar

16. Mohanty, A., Misra, M., Hinrichsen, G. Macromol. Mater. Eng. 2000, 276, 1–24; https://doi.org/10.1002/(sici)1439-2054(20000301)276:1<1::aid-mame1>3.0.co;2-w.10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-WSuche in Google Scholar

17. Al-Salem, S., Lettieri, P., Baeyens, J. Waste Manag. 2009, 29, 2625–2643; https://doi.org/10.1016/j.wasman.2009.06.004.Suche in Google Scholar

18. Nisar, J., Khan, M. A., Ali, G., Iqbal, M., Shah, A., Shah, M. R., Sherazi, S. T. H., Shah, L. A., Rehman, N. U. J. Polym. Eng. 2019, 39, 785–793; https://doi.org/10.1515/polyeng-2019-0077.Suche in Google Scholar

19. Gopinath, S., Devan, P., Pitchandi, K. RSC Adv. 2020, 10, 37266–37279; https://doi.org/10.1039/d0ra07073d.Suche in Google Scholar

20. Gopinath, S., Devan, P. Optimization and Prediction of reaction parameters of plastic Pyrolysis oil production using Taguchi Method. J. Chem. Chem. Eng. 2020, 39, 91–103.Suche in Google Scholar

21. Durmuş, A., Koç, S. N., Pozan, G. S., Kaşgöz, A. Appl. Catal. B Environ. 2005, 61, 316–322; https://doi.org/10.1016/j.apcatb.2005.06.009.Suche in Google Scholar

22. Marcilla, A., Gomez, A., Reyes-Labarta, J., Giner, A., Hernández, F. J. Anal. Appl. Pyrol. 2003, 68, 467–480; https://doi.org/10.1016/s0165-2370(03)00036-6.Suche in Google Scholar

23. Lin, Y.-H., Yang, M.-H., Yeh, T.-F., Ger, M.-D. Polym. Degrad. Stabil. 2004, 86, 121–128; https://doi.org/10.1016/j.polymdegradstab.2004.02.015.Suche in Google Scholar

24. Ceamanos, J., Mastral, J., Millera, A., Aldea, M. J. Anal. Appl. Pyrol. 2002, 65, 93–110; https://doi.org/10.1016/s0165-2370(01)00183-8.Suche in Google Scholar

25. Galwey, A. K., Brown, M. E. Thermochim. Acta 2002, 386, 91–98; https://doi.org/10.1016/s0040-6031(01)00769-9.Suche in Google Scholar

26. Ozawa, T. Bull. Chem. Soc. Jpn. 1965, 38, 1881–1886; https://doi.org/10.1246/bcsj.38.1881.Suche in Google Scholar

27. Fischer, P. E., Jou, C. S., Gokalgandhi, S. S. Ind. Eng. Chem. Res. 1987, 26, 1037–1040; https://doi.org/10.1021/ie00065a031.Suche in Google Scholar

28. Westerhout, R., Waanders, J., Kuipers, J., van Swaaij, W. P. M. Ind. Eng. Chem. Res. 1997, 36, 1955–1964; https://doi.org/10.1021/ie960501m.Suche in Google Scholar

29. Kissinger, H. E. Anal. Chem. 1957, 29, 1702–1706; https://doi.org/10.1021/ac60131a045.Suche in Google Scholar

30. Akahira, T., Sunose, T. Res Rep Chiba Inst Technol 1971, 16, 22–31.Suche in Google Scholar

31. Aguado, R., Olazar, M., Gaisán, B., Prieto, R., Bilbao, J. Ind. Eng. Chem. Res. 2002, 41, 4559–4566; https://doi.org/10.1021/ie0201260.Suche in Google Scholar

32. Encinar, J., González, J. Fuel Process. Technol. 2008, 89, 678–686; https://doi.org/10.1016/j.fuproc.2007.12.011.Suche in Google Scholar

33. Paik, P., Kar, K. K. Polym. Degrad. Stabil. 2008, 93, 24–35; https://doi.org/10.1016/j.polymdegradstab.2007.11.001.Suche in Google Scholar

34. Rantuch, P., Kačíková, D., Nagypál, B. European Journal of Environmental and Safety Sciences 2014, 2, 12–18.Suche in Google Scholar

35. Lecouvet, B., Bourbigot, S., Sclavons, M., Bailly, C. Polym. Degrad. Stabil. 2012, 97, 1745–1754; https://doi.org/10.1016/j.polymdegradstab.2012.06.022.Suche in Google Scholar

36. Fereidoon, A., Hemmati, M., Kordani, N., Kameli, M., Ghorbanzadeh Ahangari, M., Sharifi, N. J. Macromol. Sci., Part B: Physics 2011, 50, 665–678; https://doi.org/10.1080/00222341003784881.Suche in Google Scholar

37. Nisar, J., Khan, M. A., Iqbal, M., Shah, A., Khan, R. A., Sayed, M., Mahmood, T. Adv. Polym. Technol. 2018, 37, 1168–1175; https://doi.org/10.1002/adv.21776.Suche in Google Scholar

38. Chan, J., Balke, S. Polym. Degrad. Stabil. 1997, 57, 113–125; https://doi.org/10.1016/s0141-3910(96)00158-9.Suche in Google Scholar

Received: 2021-12-25
Accepted: 2022-05-22
Published Online: 2022-07-05
Published in Print: 2022-09-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2022-0005/pdf
Button zum nach oben scrollen