Home Extraction of copper ions from aqueous medium by microgel particles for in-situ fabrication of copper nanoparticles to degrade toxic dyes
Article
Licensed
Unlicensed Requires Authentication

Extraction of copper ions from aqueous medium by microgel particles for in-situ fabrication of copper nanoparticles to degrade toxic dyes

  • Muhammad Arif ORCID logo , Muhammad Shahid ORCID logo , Ahmad Irfan ORCID logo , Jan Nisar ORCID logo , Xiaofei Wang , Nayab Batool , Muhammad Ali , Zahoor H. Farooqi ORCID logo EMAIL logo and Robina Begum ORCID logo EMAIL logo
Published/Copyright: June 2, 2022

Abstract

Most of the transition metal ions are toxic and their removal from water is important. For this purpose, nearly monodisperse spherical core shell microgel particles with diameter of 88 ± 3 nm have been synthesized by free radical precipitation polymerization method and characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Extraction of copper ions from water under several conditions of pH, copper ions content and core shell microgel concentrations was undertaken. Several adsorption isotherms were tested to explore the process of adsorption of copper ions on the microgel particles. Kinetics of adsorption process was examined by pseudo first order, pseudo second order, intra-particle diffusion and Elovich models. Copper ions adsorbed in shell region of core shell microgel were reduced to copper nanoparticles. The hybrid microgel was used to reduce organic pollutants such as 4-nitrophenol (4NP), methylene blue (MB), and methyl orange (MO) in aqueous medium. The value of pseudo first order rate constant for catalytic reduction of 4NP, MB, and MO was found 0.602, 0.831, and 0.874 min−1 respectively. The resultant core shell hybrid microgel system can serve as efficient catalyst for numerous other organic transformations.


Corresponding authors: Zahoor H. Farooqi and Robina Begum, School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan, E-mail: (Z.H. Farooqi), (R. Begum)

Acknowledgments

Farooqi and Begum are obliged to Higher Education Commission, Pakistan [No.20-3995/NRPU/R&D/HEC/14/1212] and University of the Punjab, Lahore [No. D/72/Est. I dated 14-01-2022] for grants to perform this work. Ahmad Irfan is appreciative to the Deanship of Scientific Research at King Khalid University for economic sustenance through research groups program under grant number R.G.P.1/36/43.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Moors, E. H. M., Mulder, K. F., Vergragt, P. J. J. Clean. Prod. 2005, 13, 657. https://doi.org/10.1016/j.jclepro.2003.12.010.Search in Google Scholar

2. Suthar, S., Nema, A. K., Chabukdhara, M., Gupta, S. K. J. Hazard Mater. 2009, 171, 1088. https://doi.org/10.1016/j.jhazmat.2009.06.109.Search in Google Scholar PubMed

3. Jeppesen, T., Shu, L., Keir, G., Jegatheesan, V. J. Clean. Prod. 2009, 17, 703. https://doi.org/10.1016/j.jclepro.2008.11.013.Search in Google Scholar

4. Wang, X., Liu, W., Tian, J., Zhao, Z., Hao, P., Kang, X., Sang, Y., Liu, H. J. Mater. Chem. 2014, 2, 2599.https://doi.org/10.1039/c3ta14519k.Search in Google Scholar

5. Pohl, A. Water Air Soil Pollut. 2020, 231, 1. https://doi.org/10.1007/s11270-020-04863-w.Search in Google Scholar

6. Ge, Y., Li, Z. ACS Sustain. Chem. Eng. 2018, 6, 7181. https://doi.org/10.1021/acssuschemeng.8b01345.Search in Google Scholar

7. Yan, J., Lan, G., Qiu, H., Chen, C., Liu, Y., Du, G., Zhang, J. Separ. Sci. Technol. 2018, 53, 1678. https://doi.org/10.1080/01496395.2018.1439064.Search in Google Scholar

8. Zhao, G., Huang, X., Tang, Z., Huang, Q., Niu, F., Wang, X. Polym. Chem. 2018, 9, 3562. https://doi.org/10.1039/c8py00484f.Search in Google Scholar

9. Ali, I. Separ. Purif. Rev. 2010, 39, 95. https://doi.org/10.1353/col.2010.0105.Search in Google Scholar

10. Sud, D., Mahajan, G., Kaur, M. P. Bioresour. Technol. 2008, 99, 6017. https://doi.org/10.1016/j.biortech.2007.11.064.Search in Google Scholar PubMed

11. Jiang, L., Liu, P., Zhao, S. Colloids Surf. A Physicochem. Eng. Asp. 2015, 470, 31; https://doi.org/10.1016/j.colsurfa.2015.01.078.Search in Google Scholar

12. Elhafez, S. E. A., Hamad, H. A., Zaatout, A. A., Malash, G. F. Environ. Sci. Pollut. Res. 2017, 24, 1397. https://doi.org/10.1007/s11356-016-7891-7.Search in Google Scholar PubMed

13. Bacelo, H. A. M., Santos, S. C. R., Botelho, C. M. S. Chem. Eng. J. 2016, 303, 575; https://doi.org/10.1016/j.cej.2016.06.044.Search in Google Scholar

14. Arif, M., Farooqi, Z. H., Irfan, A., Begum, R. J. Mol. Liq. 2021, 336, 116270. https://doi.org/10.1016/j.molliq.2021.116270.Search in Google Scholar

15. Tatry, M. C., Galanopoulo, P., Waldmann, L., Lapeyre, V., Garrigue, P., Schmitt, V., Ravaine, V. J. Colloid Interface Sci. 2021, 589, 96. https://doi.org/10.1016/j.jcis.2020.12.082.Search in Google Scholar PubMed

16. Carvalho, W. S. P., Lee, C., Zhang, Y., Czarnecki, A., Serpe, M. J. J. Colloid Interface Sci. 2021, 585, 195. https://doi.org/10.1016/j.jcis.2020.11.045.Search in Google Scholar PubMed

17. Daly, E., Saunders, B. R. Langmuir 2000, 16, 5546; https://doi.org/10.1021/la991292o.Search in Google Scholar

18. Shahid, M., Farooqi, Z. H., Begum, R., Arif, M., Irfan, A., Azam, M. Chem. Phys. Lett. 2020, 754, 137645. https://doi.org/10.1016/j.cplett.2020.137645.Search in Google Scholar

19. Ajmal, M., Demirci, S., Siddiq, M., Aktas, N., Sahiner, N. New J. Chem. 2016, 40, 1485. https://doi.org/10.1039/c5nj02298c.Search in Google Scholar

20. Ajmal, M., Siddiq, M., Al-Lohedan, H., Sahiner, N. RSC Adv. 2014, 4, 59562. https://doi.org/10.1039/c4ra11667d.Search in Google Scholar

21. Naseem, K., Begum, R., Farooqi, Z. H., Wu, W., Irfan, A. Appl. Organomet. Chem. 2020, 34, e5742. https://doi.org/10.1002/aoc.5742.Search in Google Scholar

22. Naseem, K., Farooqi, Z. H., Begum, R., Wu, W., Irfan, A., Al-Sehemi, A. G. Macromol. Chem. Phys. 2018, 219, 1800211. https://doi.org/10.1002/macp.201800211.Search in Google Scholar

23. Naseem, K., Begum, R., Wu, W., Usman, M., Irfan, A., Al-Sehemi, A. G., Farooqi, Z. H. J. Mol. Liq. 2019, 277, 522. https://doi.org/10.1016/j.molliq.2018.12.054.Search in Google Scholar

24. Farooqi, Z. H., Khan, S. R., Hussain, T., Begum, R., Ejaz, K., Majeed, S., Ajmal, M., Kanwal, F., Siddiq, M. Kor. J. Chem. Eng. 2014, 31, 1674. https://doi.org/10.1007/s11814-014-0117-0.Search in Google Scholar

25. Naseem, K., Farooqi, Z. H., Begum, R., Wu, W., Irfan, A., Ajmal, M. Colloids Surf. A Physicochem. Eng. Asp. 2020, 594, 124646. https://doi.org/10.1016/j.colsurfa.2020.124646.Search in Google Scholar

26. Safiullah, S. M., Wasi, K. A., Basha, K. A. Appl. Surf. Sci. 2015, 357, 112. https://doi.org/10.1016/j.apsusc.2015.08.254.Search in Google Scholar

27. Godiya, C. B., Cheng, X., Li, D., Chen, Z., Lu, X. J. Hazard Mater. 2019, 364, 28. https://doi.org/10.1016/j.jhazmat.2018.09.076.Search in Google Scholar PubMed

28. Kyzas, G. Z., Deliyanni, E. A., Matis, K. A. Colloids Surf. A Physicochem. Eng. Asp. 2016, 490, 74. https://doi.org/10.1016/j.colsurfa.2015.11.038.Search in Google Scholar

29. Dada, A. O., Latona, D. F., Ojediran, O. J., Nath, O. O. J. Appl. Sci. Environ. Manag. 2016, 20, 409. https://doi.org/10.4314/jasem.v20i2.24.Search in Google Scholar

30. Guo, J., Han, Y., Mao, Y., Wickramaratne, M. N. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 801. https://doi.org/10.1016/j.colsurfa.2017.06.075.Search in Google Scholar

31. Lo, S. F., Wang, S. Y., Tsai, M. J., Lin, L. D. Chem. Eng. Res. Des. 2012, 90, 1397. https://doi.org/10.1016/j.cherd.2011.11.020.Search in Google Scholar

32. Niu, C., Wu, W., Wang, Z., Li, S., Wang, J. J. Hazard Mater. 2007, 141, 209. https://doi.org/10.1016/j.jhazmat.2006.06.114.Search in Google Scholar PubMed

33. Chen, A. H., Liu, S. C., Chen, C. Y., Chen, C. Y. J. Hazard Mater. 2008, 154, 184. https://doi.org/10.1016/j.jhazmat.2007.10.009.Search in Google Scholar PubMed

34. Božić, D., Gorgievski, M., Stanković, V., Štrbac, N., Šerbula, S., Petrović, N. Ecol. Eng. 2013, 58, 202; https://doi.org/10.1016/j.ecoleng.2013.06.033.Search in Google Scholar

35. Huang, C. C., SuY, J. J. Hazard Mater. 2010, 175, 477. https://doi.org/10.1016/j.jhazmat.2009.10.030.Search in Google Scholar PubMed

36. Zhou, L., Wang, Y., Liu, Z., Huang, Q. J. Hazard Mater. 2009, 161, 995. https://doi.org/10.1016/j.jhazmat.2008.04.078.Search in Google Scholar PubMed

37. Li, Y., Xiao, H., Pan, Y., Zhang, M., Jin, Y. J. Hazard Mater. 2019, 377, 88. https://doi.org/10.1016/j.jhazmat.2019.05.033.Search in Google Scholar PubMed

38. Sahiner, N., Demirci, S. Eur. Polym. J. 2016, 76, 156. https://doi.org/10.1016/j.eurpolymj.2016.01.046.Search in Google Scholar

39. Farooqi, Z. H., Butt, Z., Begum, R., Khan, S. R., Sharif, A., Ahmed, E. Mater. Sci. 2015, 33, 627. https://doi.org/10.1515/msp-2015-0074.Search in Google Scholar

40. Arif, M., Shahid, M., Irfan, A., Nisar, J., Wu, W., Farooqi, Z. H., Begum, R. RSC Adv. 2022, 12, 5105. https://doi.org/10.1039/d1ra09380k.Search in Google Scholar PubMed PubMed Central

Received: 2022-03-16
Accepted: 2022-05-22
Published Online: 2022-06-02
Published in Print: 2022-09-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2022-0038/html
Scroll to top button