Extraction of copper ions from aqueous medium by microgel particles for in-situ fabrication of copper nanoparticles to degrade toxic dyes
-
Muhammad Arif
, Muhammad Shahid
, Ahmad Irfan
, Jan Nisar
, Xiaofei Wang
and Robina Begum
Abstract
Most of the transition metal ions are toxic and their removal from water is important. For this purpose, nearly monodisperse spherical core shell microgel particles with diameter of 88 ± 3 nm have been synthesized by free radical precipitation polymerization method and characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Extraction of copper ions from water under several conditions of pH, copper ions content and core shell microgel concentrations was undertaken. Several adsorption isotherms were tested to explore the process of adsorption of copper ions on the microgel particles. Kinetics of adsorption process was examined by pseudo first order, pseudo second order, intra-particle diffusion and Elovich models. Copper ions adsorbed in shell region of core shell microgel were reduced to copper nanoparticles. The hybrid microgel was used to reduce organic pollutants such as 4-nitrophenol (4NP), methylene blue (MB), and methyl orange (MO) in aqueous medium. The value of pseudo first order rate constant for catalytic reduction of 4NP, MB, and MO was found 0.602, 0.831, and 0.874 min−1 respectively. The resultant core shell hybrid microgel system can serve as efficient catalyst for numerous other organic transformations.
Acknowledgments
Farooqi and Begum are obliged to Higher Education Commission, Pakistan [No.20-3995/NRPU/R&D/HEC/14/1212] and University of the Punjab, Lahore [No. D/72/Est. I dated 14-01-2022] for grants to perform this work. Ahmad Irfan is appreciative to the Deanship of Scientific Research at King Khalid University for economic sustenance through research groups program under grant number R.G.P.1/36/43.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Moors, E. H. M., Mulder, K. F., Vergragt, P. J. J. Clean. Prod. 2005, 13, 657. https://doi.org/10.1016/j.jclepro.2003.12.010.Search in Google Scholar
2. Suthar, S., Nema, A. K., Chabukdhara, M., Gupta, S. K. J. Hazard Mater. 2009, 171, 1088. https://doi.org/10.1016/j.jhazmat.2009.06.109.Search in Google Scholar PubMed
3. Jeppesen, T., Shu, L., Keir, G., Jegatheesan, V. J. Clean. Prod. 2009, 17, 703. https://doi.org/10.1016/j.jclepro.2008.11.013.Search in Google Scholar
4. Wang, X., Liu, W., Tian, J., Zhao, Z., Hao, P., Kang, X., Sang, Y., Liu, H. J. Mater. Chem. 2014, 2, 2599.https://doi.org/10.1039/c3ta14519k.Search in Google Scholar
5. Pohl, A. Water Air Soil Pollut. 2020, 231, 1. https://doi.org/10.1007/s11270-020-04863-w.Search in Google Scholar
6. Ge, Y., Li, Z. ACS Sustain. Chem. Eng. 2018, 6, 7181. https://doi.org/10.1021/acssuschemeng.8b01345.Search in Google Scholar
7. Yan, J., Lan, G., Qiu, H., Chen, C., Liu, Y., Du, G., Zhang, J. Separ. Sci. Technol. 2018, 53, 1678. https://doi.org/10.1080/01496395.2018.1439064.Search in Google Scholar
8. Zhao, G., Huang, X., Tang, Z., Huang, Q., Niu, F., Wang, X. Polym. Chem. 2018, 9, 3562. https://doi.org/10.1039/c8py00484f.Search in Google Scholar
9. Ali, I. Separ. Purif. Rev. 2010, 39, 95. https://doi.org/10.1353/col.2010.0105.Search in Google Scholar
10. Sud, D., Mahajan, G., Kaur, M. P. Bioresour. Technol. 2008, 99, 6017. https://doi.org/10.1016/j.biortech.2007.11.064.Search in Google Scholar PubMed
11. Jiang, L., Liu, P., Zhao, S. Colloids Surf. A Physicochem. Eng. Asp. 2015, 470, 31; https://doi.org/10.1016/j.colsurfa.2015.01.078.Search in Google Scholar
12. Elhafez, S. E. A., Hamad, H. A., Zaatout, A. A., Malash, G. F. Environ. Sci. Pollut. Res. 2017, 24, 1397. https://doi.org/10.1007/s11356-016-7891-7.Search in Google Scholar PubMed
13. Bacelo, H. A. M., Santos, S. C. R., Botelho, C. M. S. Chem. Eng. J. 2016, 303, 575; https://doi.org/10.1016/j.cej.2016.06.044.Search in Google Scholar
14. Arif, M., Farooqi, Z. H., Irfan, A., Begum, R. J. Mol. Liq. 2021, 336, 116270. https://doi.org/10.1016/j.molliq.2021.116270.Search in Google Scholar
15. Tatry, M. C., Galanopoulo, P., Waldmann, L., Lapeyre, V., Garrigue, P., Schmitt, V., Ravaine, V. J. Colloid Interface Sci. 2021, 589, 96. https://doi.org/10.1016/j.jcis.2020.12.082.Search in Google Scholar PubMed
16. Carvalho, W. S. P., Lee, C., Zhang, Y., Czarnecki, A., Serpe, M. J. J. Colloid Interface Sci. 2021, 585, 195. https://doi.org/10.1016/j.jcis.2020.11.045.Search in Google Scholar PubMed
17. Daly, E., Saunders, B. R. Langmuir 2000, 16, 5546; https://doi.org/10.1021/la991292o.Search in Google Scholar
18. Shahid, M., Farooqi, Z. H., Begum, R., Arif, M., Irfan, A., Azam, M. Chem. Phys. Lett. 2020, 754, 137645. https://doi.org/10.1016/j.cplett.2020.137645.Search in Google Scholar
19. Ajmal, M., Demirci, S., Siddiq, M., Aktas, N., Sahiner, N. New J. Chem. 2016, 40, 1485. https://doi.org/10.1039/c5nj02298c.Search in Google Scholar
20. Ajmal, M., Siddiq, M., Al-Lohedan, H., Sahiner, N. RSC Adv. 2014, 4, 59562. https://doi.org/10.1039/c4ra11667d.Search in Google Scholar
21. Naseem, K., Begum, R., Farooqi, Z. H., Wu, W., Irfan, A. Appl. Organomet. Chem. 2020, 34, e5742. https://doi.org/10.1002/aoc.5742.Search in Google Scholar
22. Naseem, K., Farooqi, Z. H., Begum, R., Wu, W., Irfan, A., Al-Sehemi, A. G. Macromol. Chem. Phys. 2018, 219, 1800211. https://doi.org/10.1002/macp.201800211.Search in Google Scholar
23. Naseem, K., Begum, R., Wu, W., Usman, M., Irfan, A., Al-Sehemi, A. G., Farooqi, Z. H. J. Mol. Liq. 2019, 277, 522. https://doi.org/10.1016/j.molliq.2018.12.054.Search in Google Scholar
24. Farooqi, Z. H., Khan, S. R., Hussain, T., Begum, R., Ejaz, K., Majeed, S., Ajmal, M., Kanwal, F., Siddiq, M. Kor. J. Chem. Eng. 2014, 31, 1674. https://doi.org/10.1007/s11814-014-0117-0.Search in Google Scholar
25. Naseem, K., Farooqi, Z. H., Begum, R., Wu, W., Irfan, A., Ajmal, M. Colloids Surf. A Physicochem. Eng. Asp. 2020, 594, 124646. https://doi.org/10.1016/j.colsurfa.2020.124646.Search in Google Scholar
26. Safiullah, S. M., Wasi, K. A., Basha, K. A. Appl. Surf. Sci. 2015, 357, 112. https://doi.org/10.1016/j.apsusc.2015.08.254.Search in Google Scholar
27. Godiya, C. B., Cheng, X., Li, D., Chen, Z., Lu, X. J. Hazard Mater. 2019, 364, 28. https://doi.org/10.1016/j.jhazmat.2018.09.076.Search in Google Scholar PubMed
28. Kyzas, G. Z., Deliyanni, E. A., Matis, K. A. Colloids Surf. A Physicochem. Eng. Asp. 2016, 490, 74. https://doi.org/10.1016/j.colsurfa.2015.11.038.Search in Google Scholar
29. Dada, A. O., Latona, D. F., Ojediran, O. J., Nath, O. O. J. Appl. Sci. Environ. Manag. 2016, 20, 409. https://doi.org/10.4314/jasem.v20i2.24.Search in Google Scholar
30. Guo, J., Han, Y., Mao, Y., Wickramaratne, M. N. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 801. https://doi.org/10.1016/j.colsurfa.2017.06.075.Search in Google Scholar
31. Lo, S. F., Wang, S. Y., Tsai, M. J., Lin, L. D. Chem. Eng. Res. Des. 2012, 90, 1397. https://doi.org/10.1016/j.cherd.2011.11.020.Search in Google Scholar
32. Niu, C., Wu, W., Wang, Z., Li, S., Wang, J. J. Hazard Mater. 2007, 141, 209. https://doi.org/10.1016/j.jhazmat.2006.06.114.Search in Google Scholar PubMed
33. Chen, A. H., Liu, S. C., Chen, C. Y., Chen, C. Y. J. Hazard Mater. 2008, 154, 184. https://doi.org/10.1016/j.jhazmat.2007.10.009.Search in Google Scholar PubMed
34. Božić, D., Gorgievski, M., Stanković, V., Štrbac, N., Šerbula, S., Petrović, N. Ecol. Eng. 2013, 58, 202; https://doi.org/10.1016/j.ecoleng.2013.06.033.Search in Google Scholar
35. Huang, C. C., SuY, J. J. Hazard Mater. 2010, 175, 477. https://doi.org/10.1016/j.jhazmat.2009.10.030.Search in Google Scholar PubMed
36. Zhou, L., Wang, Y., Liu, Z., Huang, Q. J. Hazard Mater. 2009, 161, 995. https://doi.org/10.1016/j.jhazmat.2008.04.078.Search in Google Scholar PubMed
37. Li, Y., Xiao, H., Pan, Y., Zhang, M., Jin, Y. J. Hazard Mater. 2019, 377, 88. https://doi.org/10.1016/j.jhazmat.2019.05.033.Search in Google Scholar PubMed
38. Sahiner, N., Demirci, S. Eur. Polym. J. 2016, 76, 156. https://doi.org/10.1016/j.eurpolymj.2016.01.046.Search in Google Scholar
39. Farooqi, Z. H., Butt, Z., Begum, R., Khan, S. R., Sharif, A., Ahmed, E. Mater. Sci. 2015, 33, 627. https://doi.org/10.1515/msp-2015-0074.Search in Google Scholar
40. Arif, M., Shahid, M., Irfan, A., Nisar, J., Wu, W., Farooqi, Z. H., Begum, R. RSC Adv. 2022, 12, 5105. https://doi.org/10.1039/d1ra09380k.Search in Google Scholar PubMed PubMed Central
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- A new strategy for cathodic protection of steel in fresh water using an aluminum electrode as an impressed current anode: a case study
- Insights into the thermal decomposition of organometallic compound ferrocene carboxaldehyde as precursor for hematite nanoparticles synthesis
- Polypropylene pyrolysis kinetics under isothermal and non-isothermal conditions: a comparative analysis
- Size controlled synthesis of silver nanoparticles: a comparison of modified Turkevich and BRUST methods
- Green synthesis of iron nanoparticles and photocatalytic activity evaluation for the degradation of methylene blue dye
- Microwave assisted green synthesis of ZnO nanoparticles using Rumex dentatus leaf extract: photocatalytic and antibacterial potential evaluation
- Extraction of copper ions from aqueous medium by microgel particles for in-situ fabrication of copper nanoparticles to degrade toxic dyes
- Adsorption of copper ions in water by adipic dihydrazide-modified kapok fibers
Articles in the same Issue
- Frontmatter
- Original Papers
- A new strategy for cathodic protection of steel in fresh water using an aluminum electrode as an impressed current anode: a case study
- Insights into the thermal decomposition of organometallic compound ferrocene carboxaldehyde as precursor for hematite nanoparticles synthesis
- Polypropylene pyrolysis kinetics under isothermal and non-isothermal conditions: a comparative analysis
- Size controlled synthesis of silver nanoparticles: a comparison of modified Turkevich and BRUST methods
- Green synthesis of iron nanoparticles and photocatalytic activity evaluation for the degradation of methylene blue dye
- Microwave assisted green synthesis of ZnO nanoparticles using Rumex dentatus leaf extract: photocatalytic and antibacterial potential evaluation
- Extraction of copper ions from aqueous medium by microgel particles for in-situ fabrication of copper nanoparticles to degrade toxic dyes
- Adsorption of copper ions in water by adipic dihydrazide-modified kapok fibers