Home Adsorption of copper ions in water by adipic dihydrazide-modified kapok fibers
Article
Licensed
Unlicensed Requires Authentication

Adsorption of copper ions in water by adipic dihydrazide-modified kapok fibers

  • Mete Sungur Dalgic EMAIL logo , Sinem Palantöken , Kevin Bethke and Klaus Rademann
Published/Copyright: June 16, 2022

Abstract

Kapok fibers (Ceiba pentandra) were modified for the removal of copper ions from aqueous solutions through adsorption. In this fast and facile method, the polysaccharide-like groups of kapok were oxidized with potassium periodate. The novel modification is the loading of the fibers with adipic dihydrazide (ADH) which contain nitrogen and oxygen atoms for heavy metal ion binding. Adsorption experiments have been carried out and analyzed via atom absorption spectroscopy and ultraviolet/visible spectroscopy. In preliminary adsorption experiments, different kapok-based materials have been analyzed on their adsorption capacity and removal efficiency via atom absorption spectroscopy. ADH-modified fibers showed the best results and an increase of copper removal efficiency by 30% in comparison to untreated kapok fibers and superior adsorption capacity compared to kapok fibers loaded with oxalic dihydrazide (ODH). Moreover, the impact of initial concentration and contact time on the adsorption capacity and on the removal efficiency values of the ADH-modified kapok fibers has been studied. Another comparison of the ADH-modified fibers with raw kapok which was cleaned with Milli-Q water, dichloromethane and ethylene glycol showed that the new adsorbents are best suited for copper solutions with concentration values of under 10 mg/L. The heavy metal adsorption experiments were analyzed through both isotherm models Langmuir and Freundlich. The Langmuir model is found to be a suitable model for copper ions. The value of the maximum adsorption capacity is 4.120 mg/g. The ADH-modified kapok fibers were characterized with attenuated total reflection infrared (ATR-IR) spectroscopy, magic-angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy and scanning electron microscopy (SEM).


Corresponding author: Mete Sungur Dalgic, Institut für Chemie, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany, E-mail:

Funding source: DFG GSC 1013

Award Identifier / Grant number: 194424575

Funding source: Max the International Max-Planck Research

Acknowledgments

The authors would like to acknowledge Humboldt-Universität zu Berlin for their support of this work. The authors also thank Dr. G. Kubsch and S. Walther for AAS; C. Erdmann and Prof. Pinna for SEM, K. Skrodczky for ATR-IR, Dr. B. Kobin and Prof. Hecht for FTIR, Dr. A. Zehl, S. Markstein and J. Odoj for the elemental CHNS-analysis, and PD Dr. G. Scholz for the solid-state NMR measurements and proofreading.

  1. Author contributions: All authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Funding from DFG GSC 1013 School of Analytical Sciences (SALSA) for the author S.P. is gratefully acknowledged and K.B. is most grateful for the scholarship from the International Max-Planck Research School at the Fritz Haber Institute.

  3. Conflict of interest statement: The authors declare no conflict of interest.

References

1. Zamora-Ledezma, C., Negrete-Bolagay, D., Figueroa, F., Zamora-Ledezma, E., Ni, M., Alexis, F., Guerrero, V. H. Heavy metal water pollution: a fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innovat. 2021, 22, 101504; https://doi.org/10.1016/j.eti.2021.101504.Search in Google Scholar

2. Verma, R., Dwivedi, P. Heavy metal pollution – a case study. Recent Res. Sci. Technol. 2013, 5, 98–99.Search in Google Scholar

3. Mainali, B., Pham, T. T. N., Ngo, H. H., Guo, W. Maximum allowable values of the heavy metals in recycled water for household laundry. Sci. Total Environ. 2013, 452–453, 427–432; https://doi.org/10.1016/j.scitotenv.2013.03.012.Search in Google Scholar PubMed

4. Kanmani, P., Jeyaseelan, A., Kamaraj, M., Sureshbabu, P., Sivashanmugam, K. Environmental applications of chitosan and cellulosic biopolymers: a comprehensive outlook. Bioresour. Technol. 2017, 242, 295–303; https://doi.org/10.1016/j.biortech.2017.03.119.Search in Google Scholar PubMed

5. Mwaikambo, L. Y., Ansell, M. P. Chemical modification of hemp, sisal, jute, and Kapok fibers by alkalization. J. Appl. Polym. Sci. 2002, 84, 2222–2234; https://doi.org/10.1002/app.10460.Search in Google Scholar

6. Abdullah, M. A., Rahmah, A. U., Man, Z. Physicochemical and sorption characteristics of Malaysian Ceiba pentandra (L.) Gaertn. as a natural oil sorbent. J. Hazard Mater. 2010, 177, 683–691; https://doi.org/10.1016/j.jhazmat.2009.12.085.Search in Google Scholar PubMed

7. Zheng, Y., Wang, J., Zhu, Y., Wang, A. Research and application of kapok fiber as an absorbing material: a mini review. J. Environ. Sci. (China) 2015, 27, 21–32; https://doi.org/10.1016/j.jes.2014.09.026.Search in Google Scholar PubMed

8. Hori, K., Flavier, M. E., Kuga, S., Lam, T. B. T., Iiyama, K. Excellent oil absorbent kapok [Ceiba pentandra (L.) Gaertn.] fiber: fiber structure, chemical characteristics, and application. J. Wood Sci. 2000, 46, 401–404; https://doi.org/10.1007/bf00776404.Search in Google Scholar

9. Wang, R., Shin, C. H., Kim, D., Ryu, M., Park, J. S. Adsorption of heavy metals and organic contaminants from aqueous stream with chemically enhanced kapok fibers. Environ. Earth Sci. 2016, 75, 338; https://doi.org/10.1007/s12665-016-5254-9.Search in Google Scholar

10. Chung, B. Y., Cho, J. Y., Lee, M. H., Wi, S. G., Kim, J. H., Kim, J. S., Kang, P. H., Nho, Y. C. Adsorption of heavy metal ions onto chemically oxidized Ceiba pentandra (L.) Gaertn. (Kapok) fibers. J. Appl. Biol. Chem. 2008, 51, 28–35; https://doi.org/10.3839/jabc.2008.006.Search in Google Scholar

11. Duan, C., Zhao, N., Yu, X., Zhang, X., Xu, J. Chemically modified kapok fiber for fast adsorption of Pb2+, Cd2+, Cu2+ from aqueous solution. Cellulose 2013, 20, 849–860; https://doi.org/10.1007/s10570-013-9875-9.Search in Google Scholar

12. Pan, Q. S., Li, D. Q., Li, J. Q., Liu, W., Ma, M. G., Yan, H. P., Zhou, B., Wang, B. S., Shi, L., Xu, S. J. Study on the properties of carboxyl functionalized kapok fiber on adsorption of mercury (II). Adv. Mater. Res. 2013, 791–793, 28–31; https://doi.org/10.4028/www.scientific.net/amr.791-793.28.Search in Google Scholar

13. Kang, Y., Park, B., Park, S.-G., Kang, N. G., Kim, H. Sorption behaviors of cotton, kapok, and rayon fibers in heavy mertal solutions. Text. Sci. Eng. 2011, 48, 386–392.Search in Google Scholar

14. Agcaoili, A. R., Herrera, M. U., Futalan, C. M., Balela, M. D. L. Fabrication of polyacrylonitrile-coated kapok hollow microtubes for adsorption of methyl orange and Cu(II) ions in aqueous solution. J. Taiwan Inst. Chem. Eng. 2017, 78, 359–369; https://doi.org/10.1016/j.jtice.2017.06.038.Search in Google Scholar

15. Wang, F., Zheng, Y., Zhu, Y., Wang, A. Oriented functionalization of natural hollow kapok fiber for highly efficient removal of toxic Hg(II) from aqueous solution. Front. Environ. Sci. 2016, 4, 4; https://doi.org/10.3389/fenvs.2016.00004.Search in Google Scholar

16. Herrera, M. U., Futalan, C. M., Gapusan, R., Balela, M. D. L. Removal of methyl orange dye and copper (II) ions from aqueous solution using polyaniline-coated kapok (Ceiba pentandra) fibers. Water Sci. Technol. 2018, 78, 1137–1147; https://doi.org/10.2166/wst.2018.385.Search in Google Scholar PubMed

17. Daneshfozoun, S., Abdullah, M. A., Abdullah, B. Preparation and characterization of magnetic biosorbent based on oil palm empty fruit bunch fibers, cellulose and Ceiba pentandra for heavy metal ions removal. Ind. Crop. Prod. 2017, 105, 93–103; https://doi.org/10.1016/j.indcrop.2017.05.011.Search in Google Scholar

18. Mincke, S., Asere, T. G., Verheye, I., Folens, K., Vanden Bussche, F., Lapeire, L., Verbeken, K., Van Der Voort, P., Tessema, D. A., Fufa, F., Du Laing, G., Stevens, C. V. Functionalized chitosan adsorbents allow recovery of palladium and platinum from acidic aqueous solutions. Green Chem. 2019, 21, 2295; https://doi.org/10.1039/c9gc00166b.Search in Google Scholar

19. Mushtaq, M., Bhatti, H. N., Iqbal, M., Noreen, S. Eriobotrya japonica seed biocomposite efficiency for copper adsorption: isotherms, kinetics, thermodynamic and desorption studies. J. Environ. Manag. 2016, 176, 21–33; https://doi.org/10.1016/j.jenvman.2016.03.013.Search in Google Scholar PubMed

20. Hao, L., Wang, P., Valiyaveettil, S. Successive extraction of As(V), Cu(II) and P(V) ions from water using spent coffee powder as renewable bioadsorbents. Sci. Rep. 2017, 7, 42881; https://doi.org/10.1038/srep42881.Search in Google Scholar PubMed PubMed Central

21. Dhivya, R., Ranjani, J., Rajendhran, J., Mayandi, J., Annaraj, J. Enhancing the anti-gastric cancer activity of curcumin with biocompatible and pH sensitive PMMA-AA/ZnO nanoparticles. Mater. Sci. Eng. C 2018, 82, 182–189; https://doi.org/10.1016/j.msec.2017.08.058.Search in Google Scholar PubMed

22. Hariharan, D., Christy, A. J., Mayandi, J., Nehru, L. C. Visible light active photocatalyst: hydrothermal green synthesized TiO2 NPs for degradation of picric acid. Mater. Lett. 2018, 222, 45–49; https://doi.org/10.1016/j.matlet.2018.03.109.Search in Google Scholar

23. Raghuwanshi, V. S., Su, J., Garvey, C. J., Holt, S. A., Raverty, W., Tabor, R. F., Holden, P. J., Gillon, M., Batchelor, W., Garnier, G. Bio-deuterated cellulose thin films for enhanced contrast in neutron reflectometry. Cellulose 2017, 24, 11–20; https://doi.org/10.1007/s10570-016-1108-6.Search in Google Scholar

24. Aziz, T., Fan, H., Khan, F. U., Ullah, R., Haq, F., Iqbal, M., Ullah, M. Synthesis of carboxymethyl starch-bio-based epoxy resin and their impact on mechanical properties. Z. Phys. Chem. 2019, 234, 1–2; https://doi.org/10.1515/zpch-2019-1434.Search in Google Scholar

25. Aziz, T., Fan, H., Haq, F., Khan, F. U., Numan, A., Iqbal, M., Raheel, M., Kiran, M., Wazir, N. Adhesive properties of poly (methyl silsesquioxanes)/bio-based epoxy nanocomposites. Iran. Polym. J. 2020, 29, 911–918; https://doi.org/10.1007/s13726-020-00849-x.Search in Google Scholar

26. Aziz, T., Ullah, A., Fan, H., Jamil, M. I., Khan, F. U., Ullah, R., Iqbal, M., Ali, A., Ullah, B. Recent progress in silane coupling agent with its emerging applications. J. Polym. Environ. 2021, 29, 3427–3443; https://doi.org/10.1007/s10924-021-02142-1.Search in Google Scholar

27. Ali, A., Muhammad, N., Hussain, S., Jamil, M. I., Uddin, A., Aziz, T., Tufail, M. K., Guo, Y., Wei, T., Rasool, G., Fan, Z., Guo, L. Kinetic and thermal study of ethylene and propylene homo polymerization catalyzed by ansa-zirconocene activated with alkylaluminum/borate: effects of alkylaluminum on polymerization Kinetic and polymer structure. Polymers 2021, 13, 268; https://doi.org/10.3390/polym13020268.Search in Google Scholar PubMed PubMed Central

28. Jamil, M. I., Wang, Q., Ali, A., Hassan, M., Aziz, T., Zhan, X., Zhang, Q. Slippery photothermal trap for outstanding deicing surfaces. J. Bionic Eng. 2018, 18, 548–558.10.1007/s42235-021-0046-7Search in Google Scholar

29. Bhatti, Z. A., Qureshi, K., Maitlo, G., Ahmed, S. Study of PAN fiber and iron ore adsorbents for arsenic removal. Civil Eng. J. 2020, 6, 548–562; https://doi.org/10.28991/cej-2020-03091491.Search in Google Scholar

30. Buaisha, M., Balku, S., Özalp-Yaman Ş. Heavy metal removal investigation in conventional activated sludge systems. Civil Eng. J. 2020, 6, 470–477; http://doi.org/10.28991/cej-2020-03091484.10.28991/cej-2020-03091484Search in Google Scholar

31. Durguti, V., Aliu, S., Laha, F., Feka, F. Determination of iron, copper and zinc in the wine by FAAS. Emerg. Sci. J. 2020, 4, 411–417; https://doi.org/10.28991/esj-2020-01240.Search in Google Scholar

32. Greis, K., Bethke, K., Stückrath, J. B., Ingber, T. T. K., Valiyaveettil, S., Rademann, K. One-pot synthesis of xanthate-functionalized cellulose for the detection of micromolar copper (II) and nickel (II) ions. Clean Soil Air Water 2019, 47, 1900179; https://doi.org/10.1002/clen.201900179.Search in Google Scholar

33. Palantöken, S., Bethke, K., Zivanovic, V., Kalinka, G., Kneipp, J., Rademann, K. Cellulose hydrogels physically crosslinked by glycine: synthesis, characterization, thermal and mechanical properties. J. Appl. Polym. Sci. 2020, 138, 48380; https://doi.org/10.1002/app.48380.Search in Google Scholar

34. Bethke, K., Palantöken, S., Andrei, V., Roß, M., Raghuwanshi, V. S., Kettemann, F., Greis, K., Ingber, T. T. K., Stückrath, J. B., Valiyaveettil, S., Rademann, K. Functionalized cellulose for water purification, antimicrobial applications, and sensors. Adv. Funct. Mater. 2018, 28, 1800409; https://doi.org/10.1002/adfm.201800409.Search in Google Scholar

35. Kenawy, I. M., Hafeez, M. A. H., Ismail, M. A., Hashem, M. A. Adsorption of Cu(II), Cd(II), Hg(II), Pb(II) and Zn(II) from aqueous single metal solutions by guanyl-modified cellulose. Int. J. Biol. Macromol. 2018, 107, 1538–1549; https://doi.org/10.1016/j.ijbiomac.2017.10.017.Search in Google Scholar

36. Rumori, P., Cerdà, V. Reversed flow injection and sandwich injection methods for the spectrophotometric determination of copper (II) with cuprizone. Anal. Chim. Acta 2003, 486, 227–235; https://doi.org/10.1016/s0003-2670(03)00493-8.Search in Google Scholar

37. Wilson, E. E., Awonusi, A., Morris, M. D., Kohn, D. H., Tecklenburg, M. M. J., Beck, L. W. Three structural roles for water in bone observed in by solid-state NMR. Biophys. J. 2006, 90, 3722–3731; https://doi.org/10.1529/biophysj.105.070243.Search in Google Scholar

38. Lerf, A., He, H., Riedl, T., Forster, M., Klinowski, J. 13C and 1H MAS NMR studies of graphite oxide and its chemically modified derivates. Solid State Ionics 1997, 101–103, 857–862; https://doi.org/10.1016/s0167-2738(97)00319-6.Search in Google Scholar

39. Salem, N. M. H. Synthesis and magnetic properties of copper (II) complexes derived from dyhdrazones. Synth. React. Inorg. Metal-Org. Nano-Metal Chem. 2005, 35, 369–377; https://doi.org/10.1081/sim-200059207.Search in Google Scholar

40. Labib, L., Mohamed, L. A., Iskander, M. F., Griesar, K., Haase, W. Copper (II) and nickel (II) metallopolymers derived from polyacylhydrazones. Transit. Met. Chem. 2000, 25, 700–705; https://doi.org/10.1023/a:1007004103386.10.1023/A:1007004103386Search in Google Scholar

41. Jeragh, B., El-Asmy, A. A. Structure and spectroscopic studies of homo-heterometallic complexes of adipic dihydrazide. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 125, 25–35; https://doi.org/10.1016/j.saa.2014.01.071.Search in Google Scholar PubMed

42. Gouamid, M., Ouahrani, M. R., Bensaci, M. B. Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using date palm. Leaves. Energy Proc. 2013, 36, 898–907; https://doi.org/10.1016/j.egypro.2013.07.103.Search in Google Scholar

43. Langmuir, I. The adsorption of gases on plane surfaces of glass, mica, and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403; https://doi.org/10.1021/ja02242a004.Search in Google Scholar

44. Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, Y.-H., Indraswati, N., Ismadji, S. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J. Hazard Mater. 2009, 162, 616–645; https://doi.org/10.1016/j.jhazmat.2008.06.042.Search in Google Scholar PubMed

45. Freundlich, H. Über die Adsorption in Lösungen. Z. Phys. Chem. 1907, 57U, 385–470; https://doi.org/10.1515/zpch-1907-5723.Search in Google Scholar

46. McKay, G., Blair, H. S., Gardner, J. R. Adsorption of dyes on chitin. I. Equilibrium studies. J. Appl. Polym. Sci. 1982, 27, 3043–3057; https://doi.org/10.1002/app.1982.070270827.Search in Google Scholar

47. Sathishkumar, P., Arulkumar, M., Ashokkumar, V., Yusoff, A. R. M., Murugesan, K., Palvannan, T., Salam, Z., Farid Nasir Ani, F. N., Hadibarata, T. Modified phyto-waste Terminalia catappa fruit shells: a reusable adsorbent for the removal of micropollutant diclofenac. RSC Adv. 2015, 5, 30950–30962; https://doi.org/10.1039/c4ra11786g.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2022-0022).


Received: 2022-02-01
Accepted: 2022-05-22
Published Online: 2022-06-16
Published in Print: 2022-09-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2022-0022/html
Scroll to top button