Size controlled synthesis of silver nanoparticles: a comparison of modified Turkevich and BRUST methods
-
Nouroze Gul
, Ijaz-ul-Mohsin
Abstract
In the present investigation, silver nanoparticles were synthesized and a comparative analysis was performed of modified Turkevich and BRUST methods. Silver nitrate precursor was reduced by trisodium citrate dihydrate and ascorbic acid was used as a surfactant. Based on Turkevich and BRUST methods, the process variables, i.e., temperature, reducing agent concentration, stirring speed, mode of injecting reducing agent/precursor to large excess volume of either precursor/reducing agent were studied. The size of the particles was preliminarily ascertained by DLS studies and it was found that modified BRUST method yielded silver nanoparticles with average particle size of 25 nm, while modified Turkevich method furnished nanoparticles with average particle size of 15 nm. The silver nanoparticles were characterized by employing the UV/visible, Zeta sizer, scanning electron microscopy (SEM) and energy dispersive microscopy (EDX) techniques. Results revealed that the silver nanoparticles size can be controlled by optimizing the conditions of modified Turkevich and BRUST methods.
Funding source: Princess Nourah bint Abdulrahman University Researchers Supporting Project
Award Identifier / Grant number: PNURSP2022R11
Acknowledgments
The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2022R11), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2022R11), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Shaheen, M., Bhatti, I. A., Ashar, A., Mohsin, M., Nisar, J., Almoneef, M. M., Iqbal, M. Synthesis of Cu-doped MgO and its enhanced photocatalytic activity for the solar-driven degradation of disperse red F3BS with condition optimization. Z. Phys. Chem. 2021, 235, 1395–1412; https://doi.org/10.1515/zpch-2020-1741.Search in Google Scholar
2. Majid, F., Shahin, A., Ata, S., Bibi, I., Malik, A., Ali, A., Laref, A., Iqbal, M., Nazir, A. The effect of temperature on the structural, dielectric and magnetic properties of cobalt ferrites synthesized via hydrothermal method. Z. Phys. Chem. 2021, 235, 1279–1296; https://doi.org/10.1515/zpch-2020-1751.Search in Google Scholar
3. Kamran, U., Bhatti, H. N., Iqbal, M., Nazir, A. Green synthesis of metal nanoparticles and their applications in different fields: a review. Z. Phys. Chem. 2019, 233, 1325–1349; https://doi.org/10.1515/zpch-2018-1238.Search in Google Scholar
4. Ghafoor, A., Bibi, I., Ata, S., Majid, F., Kamal, S., Rehman, F., Iqbal, S., Aamir, M., Slimani, Y., Iqbal, M. Synthesis and characterization of magnetically separable La1−xBixCr1−yFeyO3 and photocatalytic activity evaluation under visible light. Z. Phys. Chem. 2021, 235, 1413–1431; https://doi.org/10.1515/zpch-2020-1747.Search in Google Scholar
5. Noreen, S., Ismail, S., Ibrahim, S. M., Kusuma, H. S., Nazir, A., Yaseen, M., Khan, M. I., Iqbal, M. ZnO, CuO and Fe2O3 green synthesis for the adsorptive removal of direct golden yellow dye adsorption: kinetics, equilibrium and thermodynamics studies. Z. Phys. Chem. 2020, 235, 1055–1075; https://doi.org/10.1515/zpch-2019-1599.Search in Google Scholar
6. Bibi, I., Hussain, S., Majid, F., Kamal, S., Ata, S., Sultan, M., Din, M. I., Iqbal, M., Nazir, A. Structural, dielectric and magnetic studies of perovskite [Gd1−xMxCrO3 (M=La, Co, Bi)] nanoparticles: photocatalytic degradation of dyes. Z. Phys. Chem. 2019, 233, 1431–1445; https://doi.org/10.1515/zpch-2018-1162.Search in Google Scholar
7. Ata, S., Tabassum, A., Bibi, I., Majid, F., Sultan, M., Ghafoor, S., Bhatti, M. A., Qureshi, N., Iqbal, M. Lead remediation using smart materials. A review. Z. Phys. Chem. 2019, 233, 1377–1409; https://doi.org/10.1515/zpch-2018-1205.Search in Google Scholar
8. Ata, S., Tabassum, A., Bibi, I., Ghafoor, S., Ahad, A., Bhatti, M. A., Islam, A., Rizvi, H., Iqbal, M. Synthesis and characterization of ZnO nanorods as an adsorbent for Cr (VI) sequestration. Z. Phys. Chem. 2019, 233, 995–1017; https://doi.org/10.1515/zpch-2018-1203.Search in Google Scholar
9. Aljameel, S. S., Almessiere, M. A., Khan, F. A., Taskhandi, N., Slimani, Y., Al-Saleh, N. S., Manikandan, A., Al-Suhaimi, E. A., Baykal, A. Synthesis, characterization, anti-cancer analysis of Sr0.5Ba0.5DyxSmxFe8−2xO19 (0.00≤x≤1.0) microsphere nanocomposites. Nanomaterials 2021, 11, 700; https://doi.org/10.3390/nano11030700.Search in Google Scholar PubMed PubMed Central
10. Khan, M., Mehmood, B., Mustafa, G. M., Humaiyoun, K., Alwadai, N., Almuqrin, A. H., Albalawi, H., Iqbal, M. J. C. I. Effect of silver (Ag) ions irradiation on the structural, optical and photovoltaic properties of Mn doped TiO2 thin films based dye sensitized solar cells. Ceram. Int. 2021, 47, 15801–15806; https://doi.org/10.1016/j.ceramint.2021.02.152.Search in Google Scholar
11. Yasmin, S., Nouren, S., Bhatti, H. N., Iqbal, D. N., Iftikhar, S., Majeed, J., Mustafa, R., Nisar, N., Nisar, J., Nazir, A. Green synthesis, characterization and photocatalytic applications of silver nanoparticles using Diospyros lotus. Green Process. Synth. 2020, 9, 87–96; https://doi.org/10.1515/gps-2020-0010.Search in Google Scholar
12. Ata, S., Shaheen, I., Qurat ul, A., Ghafoor, S., Sultan, M., Majid, F., Bibi, I., Iqbal, M. Graphene and silver decorated ZnO composite synthesis, characterization and photocatalytic activity evaluation. Diam. Relat. Mater. 2018, 90, 26–31; https://doi.org/10.1016/j.diamond.2018.09.015.Search in Google Scholar
13. Awwad, A. M., Salem, N. M., Aqarbeh, M. M., Abdulaziz, F. M. Green synthesis, characterization of silver sulfide nanoparticles and antibacterial activity evaluation. Chem. Int. 2020, 6, 42–48.Search in Google Scholar
14. Remya, V., Abitha, V., Rajput, P., Rane, A., Dutta, A. Silver nanoparticles green synthesis: a mini review. Chem. Int. 2017, 3, 165–171.Search in Google Scholar
15. Zhang, W. S., Cao, J. T., Dong, Y. X., Wang, H., Ma, S. H., Liu, Y. M. Enhanced chemiluminescence by Au-Ag core-shell nanoparticles: a general and practical biosensing platform for tumor marker detection. J. Lumin. 2018, 201, 163–169; https://doi.org/10.1016/j.jlumin.2018.03.075.Search in Google Scholar
16. Oh, I.-h., Min, H. S., Li, L., Tran, T. H., Lee, Y.-k., Kwon, I. C., Choi, K., Kim, K., Huh, K. M. Cancer cell-specific photoactivity of pheophorbide a–glycol chitosan nanoparticles for photodynamic therapy in tumor-bearing mice. Biomaterials 2013, 34, 6454–6463; https://doi.org/10.1016/j.biomaterials.2013.05.017.Search in Google Scholar PubMed
17. Hoshyar, N., Gray, S., Han, H., Bao, G. J. N. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 2016, 11, 673–692; https://doi.org/10.2217/nnm.16.5.Search in Google Scholar PubMed PubMed Central
18. Scott, R. P., Quaggin, S. E. The cell biology of renal filtration. JCB (J. Cell Biol.) 2015, 209, 199–210; https://doi.org/10.1083/jcb.201410017.Search in Google Scholar PubMed PubMed Central
19. Longmire, M., Choyke, P. L., Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 2008, 3, 1–7; https://doi.org/10.2217/17435889.3.5.703.Search in Google Scholar PubMed PubMed Central
20. Zhou, Y., Dai, Z. New strategies in the design of nanomedicines to oppose uptake by the mononuclear phagocyte system and enhance cancer therapeutic efficacy. Chem. Asian J. 2018, 3, 3333–3340; https://doi.org/10.1002/asia.201800149.Search in Google Scholar PubMed
21. Chaloupka, K., Malam, Y., Seifalian, A. M. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010, 28, 580–588; https://doi.org/10.1016/j.tibtech.2010.07.006.Search in Google Scholar PubMed
22. Gliga, A. R., Skoglund, S., Wallinder, I. O., Fadeel, B., Karlsson, H. L. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol. 2014, 11, 1–17; https://doi.org/10.1186/1743-8977-11-11.Search in Google Scholar PubMed PubMed Central
23. Liu, D., Yu, S., Zhu, Z., Lyu, C., Bai, C., Ge, H., Yang, X., Pan, W. Controlled delivery of carvedilol nanosuspension from osmotic pump capsule: in vitro and in vivo evaluation. Int. J. Pharm. 2014, 475, 496–503; https://doi.org/10.1016/j.ijpharm.2014.09.008.Search in Google Scholar PubMed
24. Muhamad12, I. I., Selvakumaran, S., Lazim, N. A. M. Designing polymeric nanoparticles for targeted drug delivery system. Nanomedicine 2014, 287, 287.Search in Google Scholar
25. Muhammad, Z., Raza, A., Ghafoor, S., Naeem, A., Naz, S. S., Riaz, S., Ahmed, W., Rana, N. F. PEG capped methotrexate silver nanoparticles for efficient anticancer activity and biocompatibility. Eur. J. Pharmaceut. Sci. 2016, 91, 251–255; https://doi.org/10.1016/j.ejps.2016.04.029.Search in Google Scholar PubMed
26. Wei, L., Lu, J., Xu, H., Patel, A., Chen, Z.-S., Chen, G. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov. Today 2015, 20, 595–601; https://doi.org/10.1016/j.drudis.2014.11.014.Search in Google Scholar PubMed PubMed Central
27. Almessiere, M., Slimani, Y., Algarou, N., Gondal, M., Wudil, Y., Younas, M., Auwal, I., Baykal, A., Manikandan, A., Zubar, T. Electronic, magnetic, and microwave properties of hard/soft nanocomposites based on hexaferrite SrNi0.02Zr0.02Fe11.96O19 with variable spinel phase MFe2O4 (M=Mn, Co, Cu, and Zn). Ceram. Int. 2021, 47, 35209–35223; https://doi.org/10.1016/j.ceramint.2021.09.064.Search in Google Scholar
28. Almessiere, M. A., Slimani, Y., Gungunes, H., Manikandan, A., Baykal, A. Investigation of the effects of Tm3+ on the structural, microstructural, optical, and magnetic properties of Sr hexaferrites. Results Phys. 2019, 13, 102166; https://doi.org/10.1016/j.rinp.2019.102166.Search in Google Scholar
29. Slimani, Y., Güngüneş, H., Nawaz, M., Manikandan, A., El Sayed, H. S., Almessiere, M. A., Sözeri, H., Shirsath, S. E., Ercan, I., Baykal, A. Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li-Al co-substitution. Ceram. Int. 2018, 44, 14242–14250; https://doi.org/10.1016/j.ceramint.2018.05.028.Search in Google Scholar
30. Slimani, Y., Baykal, A., Manikandan, A. Effect of Cr3+ substitution on AC susceptibility of Ba hexaferrite nanoparticles. J. Magn. Magn Mater. 2018, 458, 204–212; https://doi.org/10.1016/j.jmmm.2018.03.025.Search in Google Scholar
31. Ali, F., Hamza, M., Iqbal, M., Basha, B., Alwadai, N., Nazir, A. State-of-art of silver and gold nanoparticles synthesis routes, characterization and applications: a review. Z. Phys. Chem. 2021, 236, 291–326; https://doi.org/10.1515/zpch-2021-3084.Search in Google Scholar
32. Dong, X., Ji, X., Wu, H., Zhao, L., Li, J., Yang, W. Shape control of silver nanoparticles by stepwise citrate reduction. J. Phys. Chem. C 2009, 113, 6573–6576; https://doi.org/10.1021/jp900775b.Search in Google Scholar
33. Zhang, X.-F., Liu, Z.-G., Shen, W., Gurunathan, S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016, 17, 1534; https://doi.org/10.3390/ijms17091534.Search in Google Scholar PubMed PubMed Central
34. Das, R., Nath, S., Chakdar, D., Gope, G., Bhattacharjee, R. Preparation of silver nanoparticles and their characterization. J. Nanotechnol. 2009, 5, 1–6.10.1080/17458080903583915Search in Google Scholar
35. Taleb, A., Petit, C., Pileni, M. P. Optical properties of self-assembled 2D and 3D superlattices of silver nanoparticles. J. Phys. Chem. B 1998, 102, 2214–2220; https://doi.org/10.1021/jp972807s.Search in Google Scholar
36. Link, S., El-Sayed, M. A. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 2003, 54, 331–366; https://doi.org/10.1146/annurev.physchem.54.011002.103759.Search in Google Scholar PubMed
37. He, R., Qian, X., Yin, J., Zhu, Z. Preparation of polychrome silver nanoparticles in different solvents. J. Mater. Chem. 2002, 12, 3783–3786; https://doi.org/10.1039/b205214h.Search in Google Scholar
38. Park, J., Cha, S.-H., Cho, S., Park, Y. Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction. J. Nanoparticle Res. 2016, 18, 1–13; https://doi.org/10.1007/s11051-016-3466-2.Search in Google Scholar
39. Phongtongpasuk, S., Poadang, S., Yongvanich, N. Environmental-friendly method for synthesis of silver nanoparticles from dragon fruit peel extract and their antibacterial activities. Energy Proc. 2016, 89, 239–247; https://doi.org/10.1016/j.egypro.2016.05.031.Search in Google Scholar
40. Mandal, A., Meda, V., Zhang, W., Farhan, K., Gnanamani, A. Synthesis, characterization and comparison of antimicrobial activity of PEG/TritonX-100 capped silver nanoparticles on collagen scaffold. Colloids Surf. B Biointerfaces 2012, 90, 191–196; https://doi.org/10.1016/j.colsurfb.2011.10.021.Search in Google Scholar PubMed
41. Ban, D. K., Paul, S. Protein corona over silver nanoparticles triggers conformational change of proteins and drop in bactericidal potential of nanoparticles: polyethylene glycol capping as preventive strategy. Colloids Surf. B Biointerfaces 2016, 146, 577–584; https://doi.org/10.1016/j.colsurfb.2016.06.050.Search in Google Scholar PubMed
42. Manno, D., Filippo, E., Di Giulio, M., Serra, A. Synthesis and characterization of starch-stabilized Ag nanostructures for sensors applications. J. Non-Cryst. Solids 2008, 354, 5515–5520; https://doi.org/10.1016/j.jnoncrysol.2008.04.059.Search in Google Scholar
43. Šileikaitė, A., Prosyčevas, I., Puišo, J., Juraitis, A., Guobienė, A. Analysis of silver nanoparticles produced by chemical reduction of silver salt solution. Mater. Sci. 2006, 12, 1392–1320.Search in Google Scholar
44. Rahimi-Nasrabadi, M., Pourmortazavi, S. M., Shandiz, S. A. S., Ahmadi, F., Batooli, H. Green synthesis of silver nanoparticles using Eucalyptus leucoxylon leaves extract and evaluating the antioxidant activities of extract. Nat. Prod. Res. 2014, 28, 1964–1969; https://doi.org/10.1080/14786419.2014.918124.Search in Google Scholar PubMed
45. Hudlikar, M., Joglekar, S., Dhaygude, M., Kodam, K. Green synthesis of TiO2 nanoparticles by using aqueous extract of Jatropha curcas L. latex. Mater. Lett. 2012, 75, 196–199; https://doi.org/10.1016/j.matlet.2012.02.018.Search in Google Scholar
46. Dankovich, T. A., Gray, D. G. Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ. Sci. Technol. 2011, 45, 1992–1998; https://doi.org/10.1021/es103302t.Search in Google Scholar PubMed
47. Fedlheim, D. L., Foss, C. A. Metal Nanoparticles: Synthesis, Characterization, and Applications; CRC Press: Boca Raton, USA, 2001; pp. 1–237.10.1201/9780367800475Search in Google Scholar
48. Tomaszewska, E., Soliwoda, K., Kadziola, K., Tkacz-Szczesna, B., Celichowski, G., Cichomski, M., Szmaja, W., Grobelny, J. Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. J. Nanomater. 2013, 2013, 313081; https://doi.org/10.1155/2013/313081.Search in Google Scholar
49. Murdock, R. C., Braydich-Stolle, L., Schrand, A. M., Schlager, J. J., Hussain, S. M. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol. Sci. 2008, 101, 239–253; https://doi.org/10.1093/toxsci/kfm240.Search in Google Scholar PubMed
50. Sasmaz, M., Senel, G. U., Obek, E. Boron bioaccumulation by the dominant macrophytes grown in various discharge water environments. Bull. Environ. Contam. Toxicol. 2021, 106, 1050–1058; https://doi.org/10.1007/s00128-021-03222-7.Search in Google Scholar PubMed
51. Sasmaz, M., Senel, G. U., Obek, E. Strontium accumulation by the terrestrial and aquatic plants affected by mining and municipal wastewaters (Elazig, Turkey). Environ. Geochem. Health 2020, 43, 1–14; https://doi.org/10.1007/s10653-020-00629-9.Search in Google Scholar PubMed
52. Sasmaz, B., Sasmaz, A., Hein, J. R. Geochemical approach to the genesis of the Oligocene-stratiform manganese-oxide deposit, Chiatura (Georgia). Ore Geol. Rev. 2021, 128, 103910; https://doi.org/10.1016/j.oregeorev.2020.103910.Search in Google Scholar
53. Sasmaz, A., Zagnitko, V. M., Sasmaz, B. Major, trace and rare earth element (REE) geochemistry of the Oligocene stratiform manganese oxide-hydroxide deposits in the Nikopol, Ukraine. Ore Geol. Rev. 2020, 126, 103772; https://doi.org/10.1016/j.oregeorev.2020.103772.Search in Google Scholar
54. Sasmaz, A., Ozkan, S., Gursu, M. F., Sasmaz, M. The hematological and biochemical changes in rats exposed to britholite mineral. Appl. Radiat. Isot. 2017, 129, 185–188; https://doi.org/10.1016/j.apradiso.2017.07.060.Search in Google Scholar PubMed
55. Shammout, M. W., Awwad, A. M. A novel route for the synthesis of copper oxide nanoparticles using Bougainvillea plant flowers extract and antifungal activity evaluation. Chem. Int. 2021, 7, 71–78.Search in Google Scholar
56. Amer, M. W., Awwad, A. M. Green synthesis of copper nanoparticles by Citrus limon fruits extract, characterization and antibacterial activity. Chem. Int. 2021, 7, 1–8.Search in Google Scholar
57. Al Banna, L. S., Salem, N. M., Jaleel, G. A., Awwad, A. M. Green synthesis of sulfur nanoparticles using Rosmarinus officinalis leaves extract and nematicidal activity against Meloidogyne javanica. Chem. Int. 2020, 6, 137–143.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- A new strategy for cathodic protection of steel in fresh water using an aluminum electrode as an impressed current anode: a case study
- Insights into the thermal decomposition of organometallic compound ferrocene carboxaldehyde as precursor for hematite nanoparticles synthesis
- Polypropylene pyrolysis kinetics under isothermal and non-isothermal conditions: a comparative analysis
- Size controlled synthesis of silver nanoparticles: a comparison of modified Turkevich and BRUST methods
- Green synthesis of iron nanoparticles and photocatalytic activity evaluation for the degradation of methylene blue dye
- Microwave assisted green synthesis of ZnO nanoparticles using Rumex dentatus leaf extract: photocatalytic and antibacterial potential evaluation
- Extraction of copper ions from aqueous medium by microgel particles for in-situ fabrication of copper nanoparticles to degrade toxic dyes
- Adsorption of copper ions in water by adipic dihydrazide-modified kapok fibers
Articles in the same Issue
- Frontmatter
- Original Papers
- A new strategy for cathodic protection of steel in fresh water using an aluminum electrode as an impressed current anode: a case study
- Insights into the thermal decomposition of organometallic compound ferrocene carboxaldehyde as precursor for hematite nanoparticles synthesis
- Polypropylene pyrolysis kinetics under isothermal and non-isothermal conditions: a comparative analysis
- Size controlled synthesis of silver nanoparticles: a comparison of modified Turkevich and BRUST methods
- Green synthesis of iron nanoparticles and photocatalytic activity evaluation for the degradation of methylene blue dye
- Microwave assisted green synthesis of ZnO nanoparticles using Rumex dentatus leaf extract: photocatalytic and antibacterial potential evaluation
- Extraction of copper ions from aqueous medium by microgel particles for in-situ fabrication of copper nanoparticles to degrade toxic dyes
- Adsorption of copper ions in water by adipic dihydrazide-modified kapok fibers