Abstract
To date, the noble metal-based nanoparticles have been used in every field of life. The Au and Ag nanoparticles (NPs) have been fabricated employing different techniques to tune the properties. In this study, the methodologies developed and adopted for the fabrication of Au and Ag have been discussed, which include physical, chemical and biological routes. The Au and Ag characteristics (morphology, size, shape) along with advantages and disadvantages are discussed. The Au and Ag NPs catalytic and biomedical applications are discussed. For the Ag and Au NPs characterization, SEM (scanning electron microscope), TEM (transmission electron microscope), FTIR (Fourier transform infra-red spectroscopy), XRD (X-rays diffraction) and DLS (dynamic light scattering) techniques are employed. The properties of Au and Ag NPs found dependent to synthesis approach, i.e., the size, shape and morphologies, which showed a promising Catalytic, drug delivery and antimicrobial agent applications. The review is a comprehensive study for the comparison of Au and Ag NPs synthesis, properties and applications in different fields.
Funding source: Princess Nourah bint Abdulrahman University
Award Identifier / Grant number: Fast-track Research Funding
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Shaheen, M., Bhatti, I. A., Ashar, A., Mohsin, M., Nisar, J., Almoneef, M. M., Iqbal, M. Z. Phys. Chem. 2021, 235, 1395–1412. https://doi.org/10.1515/zpch-2020-1741.Search in Google Scholar
2. Majid, F., Shahin, A., Ata, S., Bibi, I., Malik, A., Ali, A., Laref, A., Iqbal, M., Nazir, A. Z. Phys. Chem. 2021, 235, 1279–1296. https://doi.org/10.1515/zpch-2020-1751.Search in Google Scholar
3. Noreen, S., Ismail, S., Ibrahim, S. M., Kusuma, H. S., Nazir, A., Yaseen, M., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2020, 235, 1055–1075; https://doi.org/10.1515/zpch-2019-1599.Search in Google Scholar
4. Majid, F., Rauf, J., Ata, S., Bibi, I., Yameen, M., Iqbal, M. Z. Phys. Chem. 2019, 233, 1411–1430; https://doi.org/10.1515/zpch-2018-1305.Search in Google Scholar
5. Majid, F., Malik, A., Ata, S., Hussain, Z., Bibi, I., Iqbal, M., Rafay, M., Rizvi, H. Z. Phys. Chem. 2019, 233, 1215–1231; https://doi.org/10.1515/zpch-2018-1339.Search in Google Scholar
6. Bibi, I., Hussain, S., Majid, F., Kamal, S., Ata, S., Sultan, M., Din, M. I., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1431–1445; https://doi.org/10.1515/zpch-2018-1162.Search in Google Scholar
7. Ata, S., Tabassum, A., Bibi, I., Majid, F., Sultan, M., Ghafoor, S., Bhatti, M. A., Qureshi, N., Iqbal, M. Z. Phys. Chem. 2019, 233, 1377–1409; https://doi.org/10.1515/zpch-2018-1205.Search in Google Scholar
8. Ata, S., Tabassum, A., Bibi, I., Ghafoor, S., Ahad, A., Bhatti, M. A., Islam, A., Rizvi, H., Iqbal, M. Z. Phys. Chem. 2019, 233, 995–1017; https://doi.org/10.1515/zpch-2018-1203.Search in Google Scholar
9. Iqbal, M., Shar, G. A., Ibrahim, S. M., Iftikhar, S., Asif, M., Khan, M. I., Kusuma, H. S., Yaseen, M., Nazir, A. Z. Phys. Chem. 2020, 235, 1209–1226. https://doi.org/10.1515/zpch-2019-1562.Search in Google Scholar
10. Nazir, A., Farooq, S., Abbas, M., Alabbad, E. A., Albalawi, H., Alwadai, N., Almuqrin, A. H., Iqbal, M. Z. Phys. Chem. 2021, 235, 1589–1607. https://doi.org/10.1515/zpch-2020-1803.Search in Google Scholar
11. Noreen, S., Ismail, S., Ibrahim, S. M., Kusuma, H. S., Nazir, A., Yaseen, M., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2020, 235, 1055–1075. https://doi.org/10.1515/zpch-2019-1599.Search in Google Scholar
12. Awwad, A. M., Salem, N. M., Aqarbeh, M. M., Abdulaziz, F. M. Chem. Int. 2020, 6, 42–48.Search in Google Scholar
13. Remya, V., Abitha, V., Rajput, P., Rane, A., Dutta, A. Chem. Int. 2017, 3, 165–171.Search in Google Scholar
14. Algarou, N., Slimani, Y., Almessiere, M., Baykal, A., Guner, S., Manikandan, A., Ercan, I. J. Magn. Magn Mater. 2020, 499, 166308; https://doi.org/10.1016/j.jmmm.2019.166308.Search in Google Scholar
15. Elayakumar, K., Dinesh, A., Manikandan, A., Palanivelu, M., Kavitha, G., Prakash, S., Kumar, R. T., Jaganathan, S. K., Baykal, A. J. Magn. Magn Mater. 2019, 476, 157–165; https://doi.org/10.1016/j.jmmm.2018.09.089.Search in Google Scholar
16. Slimani, Y., Baykal, A., Manikandan, A. J. Magn. Magn Mater. 2018, 458, 204–212; https://doi.org/10.1016/j.jmmm.2018.03.025.Search in Google Scholar
17. Bhavani, P., Manikandan, A., Paulraj, P., Dinesh, A., Durka, M., Antony, S. A. J. Nanosci. Nanotechnol. 2018, 18, 4072–4081; https://doi.org/10.1166/jnn.2018.15217.Search in Google Scholar PubMed
18. Khan, M., Mehmood, B., Mustafa, G. M., Humaiyoun, K., Alwadai, N., Almuqrin, A. H., Albalawi, H., Iqbal, M. J. C. I. Ceram. Int. 2021, 47, 15801–15806; https://doi.org/10.1016/j.ceramint.2021.02.152.Search in Google Scholar
19. Yasmin, S., Nouren, S., Bhatti, H. N., Iqbal, D. N., Iftikhar, S., Majeed, J., Mustafa, R., Nisar, N., Nisar, J., Nazir, A. Green Process. Synth. 2020, 9, 87–96; https://doi.org/10.1515/gps-2020-0010.Search in Google Scholar
20. Ata, S., Shaheen, I., Qurat ul, A., Ghafoor, S., Sultan, M., Majid, F., Bibi, I., Iqbal, M. Diam. Relat. Mater. 2018, 90, 26–31; https://doi.org/10.1016/j.diamond.2018.09.015.Search in Google Scholar
21. Ali, S., Iqbal, M., Naseer, A., Yaseen, M., Bibi, I., Nazir, A., Khan, M. I., Tamam, N., Alwadai, N., Rizwan, M., Abbas, M. Environ. Nanotechnol. Monit. Manage. 2021, 16, 100511; https://doi.org/10.1016/j.enmm.2021.100511.Search in Google Scholar
22. Naseer, A., Ali, A., Ali, S., Mahmood, A., Kusuma, H., Nazir, A., Yaseen, M., Khan, M., Ghaffar, A., Abbas, M. J. Mater. Res. Technol. 2020, 9, 9093–9107; https://doi.org/10.1016/j.jmrt.2020.06.013.Search in Google Scholar
23. Rahmat, M., Rehman, A., Rahmat, S., Bhatti, H. N., Iqbal, M., Khan, W. S., Jamil, Y., Bajwa, S. Z., Sarwar, Y., Rasul, S. J. Mol. Struct. 2019, 1191, 284–290; https://doi.org/10.1016/j.molstruc.2019.04.094.Search in Google Scholar
24. Kamran, U., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1325–1349; https://doi.org/10.1515/zpch-2018-1238.Search in Google Scholar
25. Kamran, U., Bhatti, H. N., Iqbal, M., Jamil, S., Zahid, M. J. Mol. Struct. 2019, 1179, 532–539; https://doi.org/10.1016/j.molstruc.2018.11.006.Search in Google Scholar
26. Baykal, A., Guner, S., Gungunes, H., Batoo, K., Amir, M., Manikandan, A. J. Inorg. Organomet. Polym. Mater. 2018, 28, 2533–2544; https://doi.org/10.1007/s10904-018-0903-y.Search in Google Scholar
27. Asiri, S., Sertkol, M., Güngüneş, H., Amir, M., Manikandan, A., Ercan, İ., Baykal, A. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1587–1597; https://doi.org/10.1007/s10904-018-0813-z.Search in Google Scholar
28. Asiri, S., Güner, S., Demir, A., Yildiz, A., Manikandan, A., Baykal, A. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1065–1071; https://doi.org/10.1007/s10904-017-0735-1.Search in Google Scholar
29. Maruthamani, D., Vadivel, S., Kumaravel, M., Saravanakumar, B., Paul, B., Dhar, S. S., Habibi-Yangjeh, A., Manikandan, A., Ramadoss, G. J. Colloid Interface Sci. 2017, 498, 449–459; https://doi.org/10.1016/j.jcis.2017.03.086.Search in Google Scholar PubMed
30. Manikandan, A., Sridhar, R., Antony, S. A., Ramakrishna, S. J. Mol. Struct. 2014, 1076, 188–200; https://doi.org/10.1016/j.molstruc.2014.07.054.Search in Google Scholar
31. Omran, B. A. (Ed.) Current trends in algae-mediated synthesis of metal and metal oxide nanoparticles (Phyconanotechnology). In Nanobiotechnology: A Multidisciplinary Field of Science; Springer International Publishing: Cham, 2020; pp. 111–143.10.1007/978-3-030-46071-6_4Search in Google Scholar
32. Amer, M. W., Awwad, A. M. Chem. Int. 2021, 7, 1–8.Search in Google Scholar
33. Awwad, A. M., Amer, M. W., Salem, N. M., Abdeen, A. O. Chem. Int. 2020, 6, 151–159.Search in Google Scholar
34. Al Banna, L. S., Salem, N. M., Jaleel, G. A., Awwad, A. M. Chem. Int. 2020, 6, 137–143.Search in Google Scholar
35. Igwe, O. U., Nwamezie, F. Chem. Int. 2018, 4, 60–66.10.1002/nadc.20184071829Search in Google Scholar
36. Zhu, L., Gharib, M., Becker, C., Zeng, Y., Ziefuß, A. R., Chen, L., Alkilany, A. M., Rehbock, C., Barcikowski, S., Parak, W. J. J. Chem. Educ. 2019, 97, 239–243; https://doi.org/10.1021/acs.jchemed.9b00342.Search in Google Scholar
37. Pareek, V., Bhargava, A., Gupta, R., Jain, N., Panwar, J. Adv. Sci. Eng. Med. 2017, 9, 527–544; https://doi.org/10.1166/asem.2017.2027.Search in Google Scholar
38. Duan, H., Wang, D., Li, Y. Chem. Soc. Rev. 2015, 44, 5778–5792; https://doi.org/10.1039/c4cs00363b.Search in Google Scholar PubMed
39. Shamaila, S., Zafar, N., Riaz, S., Sharif, R., Nazir, J., Naseem, S. Nanomaterials 2016, 6, 71; https://doi.org/10.3390/nano6040071.Search in Google Scholar PubMed PubMed Central
40. Evanoff, D. D.Jr, Chumanov, G. ChemPhysChem 2005, 6, 1221–1231; https://doi.org/10.1002/cphc.200500113.Search in Google Scholar PubMed
41. Wan, Y., Guo, Z., Jiang, X., Fang, K., Lu, X., Zhang, Y., Gu, N. J. Colloid Interface Sci. 2013, 394, 263–268; https://doi.org/10.1016/j.jcis.2012.12.037.Search in Google Scholar PubMed
42. Steinigeweg, D., Schluecker, S. Chem. Commun. 2012, 48, 8682–8684; https://doi.org/10.1039/c2cc33850e.Search in Google Scholar PubMed
43. De Souza, C. D., Nogueira, B. R., Rostelato, M. E. C. J. Alloys Compd. 2019, 798, 714–740; https://doi.org/10.1016/j.jallcom.2019.05.153.Search in Google Scholar
44. Liu, Y., Yang, L., Shen, Y. J. Mater. Res. 2018, 33, 3537; https://doi.org/10.1557/jmr.2018.357.Search in Google Scholar
45. Liu, Y., Yang, L., Shen, Y. J. Mater. Res. 2018, 33, 2671–2679; https://doi.org/10.1557/jmr.2018.274.Search in Google Scholar
46. Yang, J., Pan, J. Acta Mater. 2012, 60, 4753–4758; https://doi.org/10.1016/j.actamat.2012.05.037.Search in Google Scholar
47. Yang, Z., Qian, H., Chen, H., Anker, J. N. J. Colloid Interface Sci. 2010, 352, 285–291; https://doi.org/10.1016/j.jcis.2010.08.072.Search in Google Scholar PubMed
48. Capek, I. Adv. Colloid Interface Sci. 2004, 110, 49–74; https://doi.org/10.1016/j.cis.2004.02.003.Search in Google Scholar PubMed
49. Solanki, J. N., Murthy, Z. V. P. Ind. Eng. Chem. Res. 2011, 50, 12311–12323; https://doi.org/10.1021/ie201649x.Search in Google Scholar
50. Solanki, J. N., Sengupta, R., Murthy, Z. Solid State Sci. 2010, 12, 1560–1566; https://doi.org/10.1016/j.solidstatesciences.2010.06.021.Search in Google Scholar
51. Zhang, W., Qiao, X., Chen, J. Chem. Phys. 2006, 330, 495–500; https://doi.org/10.1016/j.chemphys.2006.09.029.Search in Google Scholar
52. Zhang, W., Qiao, X., Chen, J. Mater. Sci. Eng. B 2007, 142, 1–15; https://doi.org/10.1016/j.mseb.2007.06.014.Search in Google Scholar
53. Salabat, A., Mirhoseini, F. J. Mol. Liq. 2018, 268, 849–853; https://doi.org/10.1016/j.molliq.2018.07.112.Search in Google Scholar
54. Xia, L., Hu, X., Kang, X., Zhao, H., Sun, M., Cihen, X. Colloid. Surface. Physicochem. Eng. Aspect. 2010, 367, 96–101; https://doi.org/10.1016/j.colsurfa.2010.06.020.Search in Google Scholar
55. Righini, G. C., Chiappini, A. Opt. Eng. 2014, 53, 071819; https://doi.org/10.1117/1.oe.53.7.071819.Search in Google Scholar
56. Shahjahan, M., Rahman, M. H., Hossain, M. S., Khatun, M. A., Islam, A., Begum, M. H. A. Nanosci. Nanometrol. 2017, 3, 34–39.10.11648/j.nsnm.20170301.16Search in Google Scholar
57. Shukla, S., Seal, S. Nanostruct. Mater. 1999, 11, 1181–1193; https://doi.org/10.1016/s0965-9773(99)00409-2.Search in Google Scholar
58. Liu, D., Li, C., Zhou, F., Zhang, T., Zhang, H., Li, X., Duan, G., Cai, W., Li, Y. Sci. Rep. 2015, 5, 1–9; https://doi.org/10.1038/srep07686.Search in Google Scholar PubMed PubMed Central
59. Li, W., Camargo, P. H., Lu, X., Xia, Y. Nano Lett. 2009, 9, 485–490; https://doi.org/10.1021/nl803621x.Search in Google Scholar PubMed PubMed Central
60. Patel, K., Kapoor, S., Dave, D. P., Mukherjee, T. Res. Chem. Intermed. 2006, 32; https://doi.org/10.1163/156856706775372771.Search in Google Scholar
61. Mezni, A., Mlayah, A., Serin, V., Smiri, L. S. Mater. Chem. Phys. 2014, 147, 496–503; https://doi.org/10.1016/j.matchemphys.2014.05.022.Search in Google Scholar
62. Zhang, Q., Xie, J., Yu, Y., Yang, J., Lee, J. Y. Small 2010, 6, 523–527; https://doi.org/10.1002/smll.200902033.Search in Google Scholar PubMed
63. Flores-Rojas, G., López-Saucedo, F., Bucio, E. Radiat. Phys. Chem. 2020, 169, 107962; https://doi.org/10.1016/j.radphyschem.2018.08.011.Search in Google Scholar
64. Eisa, W. H., Abdel-Moneam, Y. K., Shaaban, Y., Abdel-Fattah, A. A., Abou Zeid, A. M. Mater. Chem. Phys. 2011, 128, 109–113; https://doi.org/10.1016/j.matchemphys.2011.02.076.Search in Google Scholar
65. Swaroop, K., Francis, S., Somashekarappa, H. Mater. Today: Proc. 2016, 3, 1792–1798; https://doi.org/10.1016/j.matpr.2016.04.076.Search in Google Scholar
66. Gasaymeh, S. S., Radiman, S., Heng, L. Y., Saion, E., Saeed, G. M. Afr. Rev. Phys. 2010, 4.Search in Google Scholar
67. Iqbal, M., Fatima, M., Javed, T., Anam, A., Nazir, A., Kanwal, Q., Shehzadi, Z., Khan, M., Nisar, J., Abbas, M. Mater. Res. Express 2020, 7, 015070; https://doi.org/10.1088/2053-1591/ab692e.Search in Google Scholar
68. Dharmarathne, L., Ashokkumar, M., Grieser, F. J. Phys. Chem. 2012, 116, 7775–7782; https://doi.org/10.1021/jp3037507.Search in Google Scholar PubMed
69. Okitsu, K., Ashokkumar, M., Grieser, F. J. Phys. Chem. B 2005, 109, 20673–20675; https://doi.org/10.1021/jp0549374.Search in Google Scholar PubMed
70. Islam, M. H., Paul, M. T., Burheim, O. S., Pollet, B. G. Ultrason. Sonochem. 2019, 59, 104711; https://doi.org/10.1016/j.ultsonch.2019.104711.Search in Google Scholar PubMed
71. Zhang, J.-P., Chen, P., Sun, C.-H., Hu, X.-J. Appl. Catal. A Gen. 2004, 266, 49–54; https://doi.org/10.1016/j.apcata.2004.01.025.Search in Google Scholar
72. Augustine, A. K., Nampoori, V., Kailasnath, M. Optik 2014, 125, 6696–6699; https://doi.org/10.1016/j.ijleo.2014.08.075.Search in Google Scholar
73. Oluwafemi, O. S., Mochochoko, T., Leo, A. J., Mohan, S., Jumbam, D. N., Songca, S. P. Mater. Lett. 2016, 185, 576–579; https://doi.org/10.1016/j.matlet.2016.08.116.Search in Google Scholar
74. Navaladian, S., Viswanathan, B., Viswanath, R., Varadarajan, T. Nanoscale Res. Lett. 2007, 2, 44–48; https://doi.org/10.1007/s11671-006-9028-2.Search in Google Scholar PubMed PubMed Central
75. Hosseinpour-Mashkani, S. M., Ramezani, M. Mater. Lett. 2014, 130, 259–262; https://doi.org/10.1016/j.matlet.2014.05.133.Search in Google Scholar
76. Crespo, J., Guari, Y., Ibarra, A., Larionova, J., Lasanta, T., Laurencin, D., López-de-Luzuriaga, J. M., Monge, M., Olmos, M. E., Richeter, S. Dalton Trans. 2014, 43, 15713–15718; https://doi.org/10.1039/c4dt02160f.Search in Google Scholar PubMed
77. Nakamoto, M., Yamamoto, M., Fukusumi, M. Chem. Commun. 2002, 1622–1623; https://doi.org/10.1039/b203736j.Search in Google Scholar PubMed
78. Compagnini, G., Scalisi, A. A., Puglisi, O., Spinella, C. J. Mater. Res. 2004, 19, 2795–2798; https://doi.org/10.1557/jmr.2004.0401.Search in Google Scholar
79. Sportelli, M. C., Izzi, M., Volpe, A., Clemente, M., Picca, R. A., Ancona, A., Lugarà, P. M., Palazzo, G., Cioffi, N. Antibiotics 2018, 7, 67; https://doi.org/10.3390/antibiotics7030067.Search in Google Scholar PubMed PubMed Central
80. Wender, H., Andreazza, M. L., Correia, R. R., Teixeira, S. R., Dupont, J. Nanoscale 2011, 3, 1240–1245; https://doi.org/10.1039/c0nr00786b.Search in Google Scholar PubMed
81. Wender, H., Migowski, P., Feil, A. F., Teixeira, S. R., Dupont, J. Coord. Chem. Rev. 2013, 257, 2468–2483; https://doi.org/10.1016/j.ccr.2013.01.013.Search in Google Scholar
82. Sergievskaya, A., O’Reilly, A., Chauvin, A., Veselý, J., Panepinto, A., De Winter, J., Cornil, D., Cornil, J., Konstantinidis, S. Colloids Surf. A Physicochem. Eng. Asp. 2021, 126286; https://doi.org/10.1016/j.colsurfa.2021.126286.Search in Google Scholar
83. Hatakeyama, Y., Morita, T., Takahashi, S., Onishi, K., Nishikawa, K. J. Phys. Chem. C 2011, 115, 3279–3285; https://doi.org/10.1021/jp110455k.Search in Google Scholar
84. Mishra, Y., Mohapatra, S., Kabiraj, D., Mohanta, B., Lalla, N., Pivin, J., Avasthi, D. Scripta Mater. 2007, 56, 629–632; https://doi.org/10.1016/j.scriptamat.2006.12.008.Search in Google Scholar
85. Sasmaz, M., Obek, E., Sasmaz, A. Bull. Environ. Contam. Toxicol. 2016, 97, 832–837; https://doi.org/10.1007/s00128-016-1929-x.Search in Google Scholar PubMed
86. Sasmaz, M., Akgul, B., Yıldırım, D., Sasmaz, A. Int. J. Phytoremediation 2016, 18, 1164–1170; https://doi.org/10.1080/15226514.2016.1183582.Search in Google Scholar PubMed
87. Obek, E., Sasmaz, A. Bull. Environ. Contam. Toxicol. 2011, 86, 217–220; https://doi.org/10.1007/s00128-011-0197-z.Search in Google Scholar PubMed
88. Sasmaz, A., Sasmaz, M. Environ. Exp. Bot. 2009, 67, 139–144; https://doi.org/10.1016/j.envexpbot.2009.06.014.Search in Google Scholar
89. Sasmaz, A., Obek, E., Hasar, H. Ecol. Eng. 2008, 33, 278–284; https://doi.org/10.1016/j.ecoleng.2008.05.006.Search in Google Scholar
90. Rajput, K., Raghuvanshi, S., Bhatt, A., Rai, S. K., Agrawal, P. K. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 1513–1528; https://doi.org/10.20546/ijcmas.2017.607.182.Search in Google Scholar
91. Ahmed, B., Hashmi, A., Khan, M. S., Musarrat, J. Adv. Powder Technol. 2018, 29, 1601–1616; https://doi.org/10.1016/j.apt.2018.03.025.Search in Google Scholar
92. Saratale, R. G., Shin, H.-S., Kumar, G., Benelli, G., Ghodake, G. S., Jiang, Y. Y., Kim, D. S., Saratale, G. D. Environ. Sci. Pollut. Control Ser. 2018, 25, 10250–10263; https://doi.org/10.1007/s11356-017-8724-z.Search in Google Scholar PubMed
93. Yadav, M., Kaur, P. Int. J. Nanoparticles (IJNP) 2018, 10, 165–177; https://doi.org/10.1504/ijnp.2018.10015065.Search in Google Scholar
94. Suresh, A. K., Pelletier, D. A., Wang, W., Broich, M. L., Moon, J.-W., Gu, B., Allison, D. P., Joy, D. C., Phelps, T. J., Doktycz, M. J. Acta Biomater. 2011, 7, 2148–2152; https://doi.org/10.1016/j.actbio.2011.01.023.Search in Google Scholar PubMed
95. Singh, R., Shedbalkar, U. U., Wadhwani, S. A., Chopade, B. A. Appl. Microbiol. Biotechnol. 2015, 99, 4579–4593; https://doi.org/10.1007/s00253-015-6622-1.Search in Google Scholar PubMed
96. Manikprabhu, D., Lingappa, K. J. Pharm. Res. 2013, 6, 255–260; https://doi.org/10.1016/j.jopr.2013.01.022.Search in Google Scholar
97. Rashid, A., Bhatti, H. N., Iqbal, M., Noreen, S. Ecol. Eng. 2016, 91, 459–471; https://doi.org/10.1016/j.ecoleng.2016.03.014.Search in Google Scholar
98. Birla, S., Tiwari, V., Gade, A., Ingle, A., Yadav, A., Rai, M. Lett. Appl. Microbiol. 2009, 48, 173–179; https://doi.org/10.1111/j.1472-765x.2008.02510.x.Search in Google Scholar
99. Chauhan, A., Zubair, S., Tufail, S., Sherwani, A., Sajid, M., Raman, S. C., Azam, A., Owais, M. Int. J. Nanomed. 2011, 6, 2305.10.2147/IJN.S23195Search in Google Scholar PubMed PubMed Central
100. Benabdallah, N., Harrache, D., Mir, A., De La Guardia, M., Benhachem, F. Chem. Int. 2017, 3, 220–231.Search in Google Scholar
101. Aslam, A., Thomas-Hall, S. R., Manzoor, M., Jabeen, F., Iqbal, M., uz Zaman, Q., Schenk, P. M., Asif Tahir, M. J. Photochem. Photobiol. B Biol. 2018, 179, 126–133; https://doi.org/10.1016/j.jphotobiol.2018.01.003.Search in Google Scholar PubMed
102. Hussain, F., Shah, S. Z., Zhou, W., Iqbal, M. J. Photochem. Photobiol. B Biol. 2017, 170, 91–98; https://doi.org/10.1016/j.jphotobiol.2017.03.021.Search in Google Scholar PubMed
103. Sasmaz, M., Senel, G. U., Obek, E. Environ. Geochem. Health 2020, 43, 1–14; https://doi.org/10.1007/s10653-020-00629-9.Search in Google Scholar PubMed
104. Sasmaz, M., Öbek, E., Sasmaz, A. Appl. Geochem. 2019, 100, 287–292; https://doi.org/10.1016/j.apgeochem.2018.12.011.Search in Google Scholar
105. Sasmaz, M., Obek, E., Sasmaz, A. Water Environ. J. 2018, 32, 75–83; https://doi.org/10.1111/wej.12301.Search in Google Scholar
106. Palutoglu, M., Akgul, B., Suyarko, V., Yakovenko, M., Kryuchenko, N., Sasmaz, A. Bull. Environ. Contam. Toxicol. 2018, 100, 293–297; https://doi.org/10.1007/s00128-017-2220-5.Search in Google Scholar PubMed
107. Yildirim, D., Sasmaz, A. J. Geochem. Explor. 2017, 182, 228–234; https://doi.org/10.1016/j.gexplo.2016.11.005.Search in Google Scholar
108. Venkatesan, J., Manivasagan, P., Kim, S.-K., Kirthi, A. V., Marimuthu, S., Rahuman, A. A. Bioproc. Biosyst. Eng. 2014, 37, 1591–1597; https://doi.org/10.1007/s00449-014-1131-7.Search in Google Scholar PubMed
109. Rajeshkumar, S., Malarkodi, C., Vanaja, M., Gnanajobitha, G., Paulkumar, K., Kannan, C., Annadurai, G. Der Pharma Chem. 2013, 5, 224–229.10.1016/j.dit.2013.05.005Search in Google Scholar
110. Manikandakrishnan, M., Palanisamy, S., Vinosha, M., Kalanjiaraja, B., Mohandoss, S., Manikandan, R., Tabarsa, M., You, S., Prabhu, N. M. J. Drug Deliv. Sci. Technol. 2019, 54, 101345; https://doi.org/10.1016/j.jddst.2019.101345.Search in Google Scholar
111. Gomaa, H. H., Elshoubaky, G. A. Int. J. Curr. Pharm. Rev. Res. 2016, 7, 34–42.10.7897/2230-8407.07659Search in Google Scholar
112. Arya, A., Gupta, K., Chundawat, T. S., Vaya, D. Bioinorgan. Chem. Appl. 2018, 2018, 1–5; https://doi.org/10.1155/2018/7879403.Search in Google Scholar PubMed PubMed Central
113. Edison, T. N. J. I., Atchudan, R., Kamal, C., Lee, Y. R. Bioproc. Biosyst. Eng. 2016, 39, 1401–1408; https://doi.org/10.1007/s00449-016-1616-7.Search in Google Scholar PubMed
114. Raza, M. A., Kanwal, Z., Rauf, A., Sabri, A. N., Riaz, S., Naseem, S. Nanomaterials 2016, 6, 74; https://doi.org/10.3390/nano6040074.Search in Google Scholar PubMed PubMed Central
115. Raj, S., Mali, S. C., Trivedi, R. Biochem. Biophys. Res. Commun. 2018, 503, 2814–2819; https://doi.org/10.1016/j.bbrc.2018.08.045.Search in Google Scholar PubMed
116. Vinay, S., Chandrasekhar, N. Mater. Today: Proc. 2019, 9, 499–505; https://doi.org/10.1016/j.matpr.2018.10.368.Search in Google Scholar
117. Wang, L., Xu, J., Yan, Y., Liu, H., Karunakaran, T., Li, F. Artif. Cells Nanomed Biotechnol 2019, 47, 1617–1627; https://doi.org/10.1080/21691401.2019.1594862.Search in Google Scholar PubMed
118. Vijayan, S. R., Santhiyagu, P., Singamuthu, M., Kumari Ahila, N., Jayaraman, R., Ethiraj, K. Sci. World J. 2014, 2014; https://doi.org/10.1155/2014/938272.Search in Google Scholar PubMed PubMed Central
119. Pugazhendhi, A., Prabakar, D., Jacob, J. M., Karuppusamy, I., Saratale, R. G. Microb. Pathog. 2018, 114, 41–45; https://doi.org/10.1016/j.micpath.2017.11.013.Search in Google Scholar PubMed
120. Valsalam, S., Agastian, P., Esmail, G. A., Ghilan, A.-K. M., Al-Dhabi, N. A., Arasu, M. V. J. Photochem. Photobiol. B Biol. 2019, 201, 111670; https://doi.org/10.1016/j.jphotobiol.2019.111670.Search in Google Scholar PubMed
121. Awwad, A. M., Amer, M. W. Chem. Int. 2020, 6, 210–217; https://doi.org/10.13109/9783666352102.210.Search in Google Scholar
122. Folorunso, A., Akintelu, S., Oyebamiji, A. K., Ajayi, S., Abiola, B., Abdusalam, I., Morakinyo, A. J. Nanostructure Chem. 2019, 9, 111–117; https://doi.org/10.1007/s40097-019-0301-1.Search in Google Scholar
123. Abdellatif, H., El Rady, E. A. Chem. Int. 2020, 6, 122–130.Search in Google Scholar
124. Awwad, A. M., Amer, M. W., Al-Aqarbeh, M. M. Chem. Int. 2020, 6, 168–178.Search in Google Scholar
125. Shindy, H. A., El-Maghraby, M. A., Goma, M. M., Harb, N. A. Chem. Int. 2020, 6, 187–199.Search in Google Scholar
126. Abdellatif, H., Abd El Rady, E. Chem. Int. 2020, 6, 200–209.Search in Google Scholar
127. Obi, C., Ibezim-Ezeani, M. U., Nwagbo, E. J. Chem. Int. 2020, 6, 91–97.Search in Google Scholar
128. Shindy, H. A., El-Maghraby, M. A., Goma, M. M., Harb, N. A. Chem. Int. 2020, 6, 30–41.Search in Google Scholar
129. Song, J. Y., Jang, H.-K., Kim, B. S. Process Biochem. 2009, 44, 1133–1138; https://doi.org/10.1016/j.procbio.2009.06.005.Search in Google Scholar
130. Alaqarbeh, M., Shammout, M., Awwad, A. Chem. Int. 2020, 6, 49–55.Search in Google Scholar
131. Haider, A. J., AL–Anbari, R. H., Kadhim, G. R., Salame, C. T. Energy Procedia 2017, 119, 332–345; https://doi.org/10.1016/j.egypro.2017.07.117.Search in Google Scholar
132. Lydia, D. E., Khusro, A., Immanuel, P., Esmail, G. A., Al-Dhabi, N. A., Arasu, M. V. J. Photochem. Photobiol. B Biol. 2020, 206, 111868; https://doi.org/10.1016/j.jphotobiol.2020.111868.Search in Google Scholar PubMed
133. Das, P., Ghosal, K., Jana, N. K., Mukherjee, A., Basak, P. Mater. Chem. Phys. 2019, 228, 310–317; https://doi.org/10.1016/j.matchemphys.2019.02.064.Search in Google Scholar
134. Panáček, A., Prucek, R., Hrbáč, J., Nevečná, T. J., Šteffková, J., Zbořil, R., Kvitek, L. Chem. Mater. 2014, 26, 1332–1339.10.1021/cm400635zSearch in Google Scholar
135. Atkins, P., De Paula, J. Molecular spectroscopy 2: electronic transitions; WH Freeman and Company: New York, 2010; p. 489.10.1093/hesc/9780199541423.003.0011Search in Google Scholar
136. Takale, B. S., Bao, M., Yamamoto, Y. Org. Biomol. Chem. 2014, 12, 2005–2027; https://doi.org/10.1039/c3ob42207k.Search in Google Scholar PubMed
137. Suchomel, P., Kvitek, L., Prucek, R., Panacek, A., Halder, A., Vajda, S., Zboril, R. Sci. Rep. 2018, 8, 1–11; https://doi.org/10.1038/s41598-018-22976-5.Search in Google Scholar PubMed PubMed Central
138. Mao, H., Ji, C., Liu, M., Cao, Z., Sun, D., Xing, Z., Chen, X., Zhang, Y., Song, X.-M. Appl. Surf. Sci. 2018, 434, 522–533; https://doi.org/10.1016/j.apsusc.2017.10.209.Search in Google Scholar
139. Jayapriya, M., Dhanasekaran, D., Arulmozhi, M., Nandhakumar, E., Senthilkumar, N., Sureshkumar, K. Res. Chem. Intermed. 2019, 45, 3617–3631; https://doi.org/10.1007/s11164-019-03812-5.Search in Google Scholar
140. Obeid, L., Bée, A., Talbot, D., Jaafar, S. B., Dupuis, V., Abramson, S., Cabuil, V., Welschbillig, M. J. Colloid Interface Sci. 2013, 410, 52–58; https://doi.org/10.1016/j.jcis.2013.07.057.Search in Google Scholar PubMed
141. Nagar, N., Devra, V. Heliyon 2019, 5, e01356; https://doi.org/10.1016/j.heliyon.2019.e01356.Search in Google Scholar PubMed PubMed Central
142. Mene, D. F., Iwuoha, G. N. Chem. Int. 2021, 7, 217–223; https://doi.org/10.1002/9783527817047.index.Search in Google Scholar
143. Jalal, G., Abbas, N., Deeba, F., Butt, T., Jilal, S., Sarfraz, S. Chem. Int. 2021, 7, 197–207.Search in Google Scholar
144. Elsherif, K. M., El-Dali, A., Alkarewi, A. A., Mabrok, A. Chem. Int. 2021, 7, 79–89; https://doi.org/10.1017/cbo9781316151877.018.Search in Google Scholar
145. Chokor, A. A. Chem. Int. 2021, 7, 188–196.10.1002/vetr.282Search in Google Scholar
146. Awwad, A. M., Salem, N. M., Amer, M. W., Shammout, M. W. Chem. Int. 2021, 7, 139–144.Search in Google Scholar
147. Abbas, N., Butt, M. T., Ahmad, M. M., Deeba, F., Hussain, N. Chem. Int. 2021, 7, 103–111.Search in Google Scholar
148. Ukpaka, C. P., Lezorghia, S. B., Nwosu, H. Chem. Int. 2020, 6, 160–167; https://doi.org/10.5406/j.ctv160btst.27.Search in Google Scholar
149. Ukpaka, C. P., Eno, O. N. Chem. Int. 2020, 7, 62–70.Search in Google Scholar
150. Liu, H., Lian, T., Liu, Y., Hong, Y., Sun, D., Li, Q. Ind. Eng. Chem. Res. 2017, 56, 5262–5270. https://doi.org/10.1021/acs.iecr.7b00064.Search in Google Scholar
151. Ivanova, N., Gugleva, V., Dobreva, M., Pehlivanov, I., Stefanov, S., Andonova, V. Nanomedicines; IntechOpen: London, UK, 2018.Search in Google Scholar
152. Greulich, C., Diendorf, J., Simon, T., Eggeler, G., Epple, M., Köller, M. J. A. B. Acta Biomaterialia 2011, 7, 347–354. https://doi.org/10.1016/j.actbio.2010.08.003.Search in Google Scholar PubMed
153. Jeyaraj, M., Sathishkumar, G., Sivanandhan, G., MubarakAli, D., Rajesh, M., Arun, R., Kapildev, G., Manickavasagam, M., Thajuddin, N., K. J. C. Premkumar. Colloids Surf. B Biointerfaces 2013, 106, 86–92; https://doi.org/10.1016/j.colsurfb.2013.01.027.Search in Google Scholar PubMed
154. Kawata, K., Osawa, M., Okabe, S. J. Environ. Sci. Technol. 2009, 43, 6046–6051; https://doi.org/10.1021/es900754q.Search in Google Scholar PubMed
155. Gurunathan, S., Han, J. W., Eppakayala, V., Jeyaraj, M., Kim, J.-H. BioMed Res. Int. 2013, 2013, 1–7; https://doi.org/10.1155/2013/535796.Search in Google Scholar PubMed PubMed Central
156. AshaRani, P., Low Kah Mun, G., Hande, M. P., Valiyaveettil, S. ACS Nano 2009, 3, 279–290; https://doi.org/10.1021/nn800596w.Search in Google Scholar PubMed
157. Vasanth, K., Ilango, K., MohanKumar, R., Agrawal, A., Dubey, G. P. Colloids Surf. B Biointerfaces 2014, 117, 354–359; https://doi.org/10.1016/j.colsurfb.2014.02.052.Search in Google Scholar PubMed
158. Liu, F., Mahmood, M., Xu, Y., Watanabe, F., Biris, A. S., Hansen, D. K., Inselman, A., Casciano, D., Patterson, T. A., Paule, M. G. Front. Neurosci. 2015, 9, 115; https://doi.org/10.3389/fnins.2015.00115.Search in Google Scholar PubMed PubMed Central
159. Zhang, X.-F., Shen, W., Gurunathan, S. Int. J. Mol. Sci. 2016, 17, 1603; https://doi.org/10.3390/ijms17101603.Search in Google Scholar PubMed PubMed Central
160. Park, E.-J., Yi, J., Kim, Y., Choi, K., Park, K. Toxicol. Vitro 2010, 24, 872–878; https://doi.org/10.1016/j.tiv.2009.12.001.Search in Google Scholar PubMed
161. Ahmed, K. B. R., Nagy, A. M., Brown, R. P., Zhang, Q., Malghan, S. G., Goering, P. L. Toxicol. Vitro 2017, 38, 179–192; https://doi.org/10.1016/j.tiv.2016.10.012.Search in Google Scholar PubMed
162. Carlson, C., Hussain, S. M., Schrand, A. M., Braydich-Stolle, L. K., Hess, K. L., Jones, R. L., Schlager, J. J. J. J. Phys. Chem. B 2008, 112, 13608–13619; https://doi.org/10.1021/jp712087m.Search in Google Scholar PubMed
163. Gurunathan, S., Lee, K.-J., Kalishwaralal, K., Sheikpranbabu, S., Vaidyanathan, R., Eom, S. H. Biomaterials 2009, 30, 6341–6350; https://doi.org/10.1016/j.biomaterials.2009.08.008.Search in Google Scholar PubMed
164. Asharani, P., Hande, M. P., Valiyaveettil, S. BMC Cell Biol. 2009, 10, 1–14; https://doi.org/10.1186/1471-2121-10-65.Search in Google Scholar
165. Agunbiade, S. O., Ojezele, O. J., Barinemene, M. Chem. Int. 2020, 6, 131–136; https://doi.org/10.1111/1756-185x.13621.Search in Google Scholar
166. Muhammad, I., Pandian, S., Hopper, W. Chem. Int. 2020, 6, 260–266; https://doi.org/10.2307/j.ctv18sqzjb.12.Search in Google Scholar
167. Mekonnen, A., Degu, Y., Carlson, R. Chem. Int. 2020, 6, 1–10.Search in Google Scholar
168. Song, J. Y., Kim Korean, B. S. J. Chem. Eng. 2008, 25, 808–811; https://doi.org/10.1007/s11814-008-0133-z.Search in Google Scholar
169. Mohammed, A. E. Asian Pac. J. Trop. Biomed 2015, 5, 382–386; https://doi.org/10.1016/s2221-1691(15)30373-7.Search in Google Scholar
170. Shanmuganathan, R., Karuppusamy, I., Saravanan, M., Muthukumar, H., Ponnuchamy, K., Ramkumar, V. S., Pugazhendhi, A. Curr. Pharmaceut. Des. 2019, 25, 2650–2660; https://doi.org/10.2174/1381612825666190708185506.Search in Google Scholar PubMed
171. Chandrakanth, R. K., Ashajyothi, C., Oli, A. K., Prabhurajeshwar, C. J. Chem. 2014, 30, 1253–1262; https://doi.org/10.13005/ojc/300341.Search in Google Scholar
172. Patil, M. P., Kim, G.-D. Appl. Microbiol. Biotechnol. 2017, 101, 79–92; https://doi.org/10.1007/s00253-016-8012-8.Search in Google Scholar PubMed
173. Lee, B., Lee, D. G. J. Appl. Microbiol. 2019, 127, 701–712; https://doi.org/10.1111/jam.14357.Search in Google Scholar PubMed
174. Katas, H., Lim, C. S., Azlan, A. Y. H. N., Buang, F., Busra, M. F. M. Saudi Pharmaceut. J. 2019, 27, 283–292; https://doi.org/10.1016/j.jsps.2018.11.010.Search in Google Scholar PubMed PubMed Central
175. Nishanthi, R., Malathi, S., Palani, P. Mater. Sci. Eng. C 2019, 96, 693–707.10.1016/j.msec.2018.11.050Search in Google Scholar PubMed
176. Mythili, R., Selvankumar, T., Srinivasan, P., Sengottaiyan, A., Sabastinraj, J., Ameen, F., Al-Sabri, A., Kamala-Kannan, S., Govarthanan, M., Kim, H. J. Mol. Liq. 2018, 262, 318–321; https://doi.org/10.1016/j.molliq.2018.04.087.Search in Google Scholar
177. Rasheed, T., Bilal, M., Iqbal, H. M., Li, C. Colloids Surf. B Biointerfaces 2017, 158, 408–415; https://doi.org/10.1016/j.colsurfb.2017.07.020.Search in Google Scholar PubMed
178. Panáček, A., Kvitek, L., Prucek, R., Kolář, M., Večeřová, R., Pizúrová, N., Sharma, V. K., Nevěčná, T. J., Zbořil, R. J. Phys. Chem. B 2006, 110, 16248–16253.10.1021/jp063826hSearch in Google Scholar PubMed
179. Parashar, V., Parashar, R., Sharma, B., Pandey, A. C. Dig. J. Nanomater. Biostructures 2009, 4, 1–7.Search in Google Scholar
180. Mittal, A. K., Chisti, Y., Banerjee, U. C. Biotechnol. Adv. 2013, 31, 346–356; https://doi.org/10.1016/j.biotechadv.2013.01.003.Search in Google Scholar PubMed
181. Kumar, V. S., Nagaraja, B., Shashikala, V., Padmasri, A., Madhavendra, S. S., Raju, B. D., Rao, K. R. J. Mol. Catal. Chem. 2004, 223, 313–319; https://doi.org/10.1016/j.molcata.2003.09.047.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Article
- State-of-art of silver and gold nanoparticles synthesis routes, characterization and applications: a review
- Original Papers
- Microstructural characterization and corrosion behaviour of ultrasound-assisted synthesis of Ni–xCo–yTiO2 nanocomposites in alkaline environments
- Interaction of cationic surfactant with acid yellow dye in absence/presence of organic and inorganic additives: conductivity and dye solubilization methods
- Kinetics of methylene blue dye adsorptive removal using halloysite nanocomposite hydrogels
- Molecular interaction investigation of some alkaline earth metal salts in aqueous citric acid at various temperatures by physiochemical studies
- Impacts of polyols and temperature on the micellization, interaction and thermodynamics behavior of the mixture of tetradecyltrimethylammonium bromide and polyvinyl alcohol
- The physicochemical and DNA binding studies of some medicinal compounds in solutions
Articles in the same Issue
- Frontmatter
- Review Article
- State-of-art of silver and gold nanoparticles synthesis routes, characterization and applications: a review
- Original Papers
- Microstructural characterization and corrosion behaviour of ultrasound-assisted synthesis of Ni–xCo–yTiO2 nanocomposites in alkaline environments
- Interaction of cationic surfactant with acid yellow dye in absence/presence of organic and inorganic additives: conductivity and dye solubilization methods
- Kinetics of methylene blue dye adsorptive removal using halloysite nanocomposite hydrogels
- Molecular interaction investigation of some alkaline earth metal salts in aqueous citric acid at various temperatures by physiochemical studies
- Impacts of polyols and temperature on the micellization, interaction and thermodynamics behavior of the mixture of tetradecyltrimethylammonium bromide and polyvinyl alcohol
- The physicochemical and DNA binding studies of some medicinal compounds in solutions