Home Physical Sciences Interaction of cationic surfactant with acid yellow dye in absence/presence of organic and inorganic additives: conductivity and dye solubilization methods
Article
Licensed
Unlicensed Requires Authentication

Interaction of cationic surfactant with acid yellow dye in absence/presence of organic and inorganic additives: conductivity and dye solubilization methods

  • Md. Ariful Haque , Shamim Mahbub , Mohammad Majibur Rahman , Md. Anamul Hoque , Dileep Kumar EMAIL logo , Norah Salem Alsaiari , Saikh M. Wabaidur and Fehaid Mohammed Alsubaie
Published/Copyright: September 27, 2021

Abstract

In the present study, the conductometric and dye-solubilization techniques have been utilized to investigate the interaction between an anionic dye (acid yellow 23 [AY]) and a cationic surfactant (cetyltrimethylammonium bromide [CTAB]) in presence of organic (ethanol)/inorganic (NaCl) additives. From the conductometric method, two critical micelle concentrations (cmc) were found for AY + CTAB mixture in an aqueous system and the cmc values were found to undergo a change with the variation of AY concentrations. The cmc values of AY + CTAB systems were observed higher in the alcoholic medium, while the same was found to be lower in the NaCl solutions. The change in cmc of AY + CTAB systems shows an U-like curve with an increase of temperature. The negative free energy of micellization ( Δ G m o ) for the AY + CTAB systems has indicated a spontaneous micelle formation in all of the cases studied. The enthalpy ( Δ H m o ), as well as the entropy of micellization ( Δ S m o ) for the AY + CTAB systems, were assessed and discussed with proper reasoning. Additionally, the enthalpy-entropy compensation parameters were also investigated and illustrated. The solubility of AY and C D was observed to rise linearly with an increase in the concentration of CTAB/NaCl solution. The solubilization capacity (χ) of AY, the molar partition coefficient (K M) amongst the micellar and the aqueous phase, and free energy of solubilization ( Δ G S o ) were evaluated and discussed in detail. The former parameters undergo an increase with an increase of NaCl concentrations.


Corresponding author: Dileep Kumar, Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam; and Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Panda, M., Fatma, N., Kamil, M. Z. Phys. Chem. 2019, 233, 707; https://doi.org/10.1515/zpch-2017-1000.Search in Google Scholar

2. Fouda, A. E.-A. E.-S., Zaki, E.-S. G., Khalifa, M. A. Z. Phys. Chem. 2020, 234, 171; https://doi.org/10.1515/zpch-2018-1361.Search in Google Scholar

3. Nour, A. M. A., Negm, N. A., Sayed, G. H., Tawfik, S. M., Badr, E. A. Z. Phys. Chem. 2019, 233, 1761; https://doi.org/10.1515/zpch-2018-1296.Search in Google Scholar

4. Kumar, D., Rub, M. A. Ind. Eng. Chem. Res. 2020, 59, 11072; https://doi.org/10.1021/acs.iecr.0c00678.Search in Google Scholar

5. Kumar, D., Rub, M. A., Asiri, M. A. R. Soc. Open Sci. 2020, 7, 200775; https://doi.org/10.1098/rsos.200775.Search in Google Scholar PubMed PubMed Central

6. Rub, M. A., Kumar, D., Asiri, M. A., Alghamdi, Y. G. Mol. Phys. 2021, 119, e1817595; https://doi.org/10.1080/00268976.2020.1817595.Search in Google Scholar

7. Mahbub, S., Akter, S., Luthfunnessa, Akter, P., Hoque, M. A., Rub, M. A., Kumar, D., Alghamdi, Y. G., Asiri, A. M., Džudžević-Čančar, H. RSC Adv. 2020, 10, 14531; https://doi.org/10.1039/d0ra00213e.Search in Google Scholar PubMed PubMed Central

8. El-Sharaky, E. A., Khamis, E. A., El-Azabawy, O. E., El-Tabei, A. S. Z. Phys. Chem. 2019, 233, 1571; https://doi.org/10.1515/zpch-2018-1243.Search in Google Scholar

9. Khattak, N. S., Shah, L. A., Sohail, M., Ahmad, S., Farooq, M., Ara, L., Kader, S. I. Z. Phys. Chem. 2019, 233, 933; https://doi.org/10.1515/zpch-2018-1241.Search in Google Scholar

10. Rub, M. A., Asiri, A. M., Azum, N., Khan, A., Khan, A. A. P., Khan, S. B., Rahman, M. M., Kumar, D., Al-Youbi, A. O. Z. Phys. Chem. 2013, 227, 1671; https://doi.org/10.1524/zpch.2013.0360.Search in Google Scholar

11. Rosen, M. J. Surfactants and Interfacial Phenomena, 3rd ed.; Wiley-Interscience: New York, 2004.10.1002/0471670561Search in Google Scholar

12. Ali, M. A., Amin, M. R., Mahbub, S., Hossen, M. D., Hoque, M. A., Kumar, D. Z. Phys. Chem. 2021; https://doi.org/10.1515/zpch-2021-3013.Search in Google Scholar

13. Hechig, M., Lev, S., Shitenberg, D., Dicker, D., Kramer, M. R. Chest 2021, 160, e9.10.1016/j.chest.2021.01.028Search in Google Scholar

14. Veldhuizen, R. A. W., Zuo, Y. Y., Petersen, N. O., Lewis, J. F., Possmayer, F. Expet Rev. Respir. Med. 2021, 15, 597; https://doi.org/10.1080/17476348.2021.1865809.Search in Google Scholar

15. Goddard, E. O., Goddard, E. D. In Interactions of Surfactants with Polymer and Proteins; Ananthapadamanabham, K. P., Ed. CRC Press: Boca Raton, 1993.Search in Google Scholar

16. Iram, M., Sultana, H., Usman, M., Ahmad, B., Akram, N., Siddiq, M., Rashid, S. Z. Phys. Chem. 2021; https://doi.org/10.1515/zpch-2020-1706.Search in Google Scholar

17. Azmat, M. A., Khan, I. A., Cheema, H. M., Rajwana, I. A., Khan, A. S., Khan, A. A. J. Zhejiang Univ. Sci. B 2012, 13, 239; https://doi.org/10.1631/jzus.b1100194.Search in Google Scholar

18. Mehta, S. K., Kumar, S., Chaudhary, S., Bhasin, K. K. Nanoscale Res. Lett. 2009, 4, 1197; https://doi.org/10.1007/s11671-009-9377-8.Search in Google Scholar

19. Blus, K., Bemska, J. Autex Res. J. 2010, 10, 64.10.1524/9783486710489.101Search in Google Scholar

20. Sudbeck, E. A., Dubin, P. L., Curran, M. E., Skelton, J. J. Colloid Interface Sci. 1991, 142, 512; https://doi.org/10.1016/0021-9797(91)90081-i.Search in Google Scholar

21. Peláez-Cid, A. A., Romero-Hernández, V., Herrera-González, A. M., Bautista-Hernández, A., Coreño-Alonso, O. Chin. J. Chem. Eng. 2020, 28, 613; https://doi.org/10.1016/j.cjche.2019.04.021.Search in Google Scholar

22. Simoncic, B., Kert, M. Dyes Pigments 2002, 54, 221; https://doi.org/10.1016/s0143-7208(02)00046-3.Search in Google Scholar

23. Mondal, S., Doloi, B., Ghosh, S. Fluid Phase Equil. 2013, 360, 180; https://doi.org/10.1016/j.fluid.2013.09.049.Search in Google Scholar

24. Rashid, S., Usman, M., Shahzad, T., Saeed, M., Haq, A. U., Ibrahim, M., Siddiq, M., Iram, M. Z. Phys. Chem. 2019, 233, 183; https://doi.org/10.1515/zpch-2018-1142.Search in Google Scholar

25. Vijelder, M. D. Z. Phys. Chem. 2003, 217, 653.10.1524/zpch.217.6.653.20450Search in Google Scholar

26. Nemoto, J., Funahashi, H. J. Colloid Interface Sci. 1977, 62, 95; https://doi.org/10.1016/0021-9797(77)90069-8.Search in Google Scholar

27. Tunç, S., Duman, O. Fluid Phase Equil. 2007, 251, 1; https://doi.org/10.1016/j.fluid.2006.10.020.Search in Google Scholar

28. Mahbub, S., Shahriar, I., Iqfath, M., Rub, M. A., Hoque, M. A., Halim, M. A., Khan, M. A., Asiri, A. M. J. Environ. Chem. Eng. 2019, 7, 103364; https://doi.org/10.1016/j.jece.2019.103364.Search in Google Scholar

29. Oakenfull, D. G., Fenwick, D. E. J. Phys. Chem. 1974, 78, 1759; https://doi.org/10.1021/j100610a018.Search in Google Scholar

30. Islam, M., Hossain, M., Mahbub, S., Hoque, M. A., Kumar, D., Wabaidur, S. M., Habila, M. A., Al-Anazy, M. M., Kabir, M. Mol. Phys. 2021, 119, e1925364. https://doi.org/10.1080/00268976.2021.1925364.Search in Google Scholar

31. Bracko, S., Span, J. Dyes Pigments 2001, 50, 77; https://doi.org/10.1016/s0143-7208(01)00042-0.Search in Google Scholar

32. Simoncic, B., Span, J. Dyes Pigments 1998, 36, 1; https://doi.org/10.1016/s0143-7208(97)00102-2.Search in Google Scholar

33. Ali, A., Uzair, S., Farooq, U. Tenside Surfactants Deterg. 2017, 54, 342; https://doi.org/10.3139/113.110509.Search in Google Scholar

34. Mahbub, S., Rub, M. A., Hoque, M. A., Khan, M. A. J. Phys. Org. Chem. 2018, 31, e3872; https://doi.org/10.1002/poc.3872.Search in Google Scholar

35. Rahim, M. A., Mahbub, S., Ahsan, S. M. A., Alam, M., Saha, M., Shahriar, I., Rana, S., Halim, M. A., Hoque, M. A., Kumar, D., Khan, J. M. J. Mol. Liq. 2021, 322, 114683; https://doi.org/10.1016/j.molliq.2020.114683.Search in Google Scholar

36. Hoque, M. A., Patoary, M.-O.-F., Rashid, M. M., Molla, M. R., Rub, M. A. J. Solut. Chem. 2017, 46, 682; https://doi.org/10.1007/s10953-017-0594-y.Search in Google Scholar

37. Rub, M. A., Kumar, D. J. Chem. Eng. Data 2020, 65, 2659; https://doi.org/10.1021/acs.jced.0c00038.Search in Google Scholar

38. Mahbub, S., Rub, M. A., Hoque, M. A., Khan, M. A., Kumar, D. J. Phys. Org. Chem. 2019, 32, e3967; https://doi.org/10.1002/poc.3967.Search in Google Scholar

39. Rodríguez, A., Graciani, M. M., Muñoz, M., Moyá, M. L. Langmuir 2003, 19, 7206; https://doi.org/10.1021/la0301137.Search in Google Scholar

40. Williams, R. J., Phillips, J. N., Mysels, K. J. Trans. Faraday Soc. 1955, 51, 728; https://doi.org/10.1039/tf9555100728.Search in Google Scholar

41. Goscianska, J., Pietrzak, R. R. Catal. Today 2015, 249, 259; https://doi.org/10.1016/j.cattod.2014.11.017.Search in Google Scholar

42. Gautam, R. K., Gautam, P. K., Banerjee, S., Rawat, V., Soni, S., Sharma, S. K., Chattopadhyaya, M. C. J. Environ. Chem. Eng. 2015, 3, 79; https://doi.org/10.1016/j.jece.2014.11.026.Search in Google Scholar

43. Sahnoun, S., Boutahala, M., Tiar, C., Kahoul, A. C. R. Chim. 2018, 21, 391; https://doi.org/10.1016/j.crci.2018.01.008.Search in Google Scholar

44. Kuban, V., Hedbavny, J., Jancarova, I., Vrchlabsky, M. Collect. Czech Chem. Commun. 1989, 54, 622.10.1135/cccc19890622Search in Google Scholar

45. Sharma, R., Kamal, A., Mahajan, R. K. Soft Matter 2016, 12, 1736; https://doi.org/10.1039/c5sm02667a.Search in Google Scholar PubMed

46. Kundu, S., Panigrahi, S., Pal, A., Ghosh, S. K., Nath, S., Praharaj, S., Basu, S., Pal, T. Dyes Pigments 2006, 69, 177; https://doi.org/10.1016/j.dyepig.2005.03.010.Search in Google Scholar

47. Chakraborty, T., Chakraborty, I., Ghosh, S. Langmuir 2006, 22, 9905; https://doi.org/10.1021/la0621214.Search in Google Scholar PubMed

48. Koya, P. A., Wagay, T. A., Ismail, K. J. Solut. Chem. 2015, 44, 100; https://doi.org/10.1007/s10953-014-0284-y.Search in Google Scholar

49. Ludzik, K., Kustrzepa, K., Piekarski, H., Jozwiak, M. J. Chem. Eng. Data 2016, 61, 1047; https://doi.org/10.1021/jev061i005_864350.Search in Google Scholar

50. Nazir, N., Ahanger, M. S., Akbar, A. J. Dispersion Sci. Technol. 2009, 30, 51; https://doi.org/10.1080/01932690802477264.Search in Google Scholar

51. Shah, S. K., Chatterjee, S. K., Bhattarai, A. J. Mol. Liq. 2016, 222, 906; https://doi.org/10.1016/j.molliq.2016.07.098.Search in Google Scholar

52. Das, S., Mondal, S., Ghosh, S. J. Chem. Eng. Data 2013, 58, 2586; https://doi.org/10.1021/je4004788.Search in Google Scholar

53. Emerson, M. F., Holtzer, A. Hydrophobic bond in micellar systems. J. Phys. Chem. 1967, 71, 3320; https://doi.org/10.1021/j100869a031.Search in Google Scholar PubMed

54. Marszall, L. Langmuir 1990, 6, 347; https://doi.org/10.1021/la00092a010.Search in Google Scholar

55. Para, G., Jarek, E., Warszynski, P. Adv. Colloid Interface Sci. 2006, 122, 39; https://doi.org/10.1016/j.cis.2006.06.017.Search in Google Scholar PubMed

56. Kresheck, G. C. In Water: A Comprehensive Treatise; Franks, F., Ed. Plenum: New York, Vol. 4, 1975.Search in Google Scholar

57. Hoque, M. A., Mahbub, S., Rub, M. A., Rana, S., Khan, M. A. Kor. J. Chem. Eng. 2018, 35, 2269; https://doi.org/10.1007/s11814-018-0120-y.Search in Google Scholar

58. Shamsipur, M., Alizadeh, N., Gharibi, H. Indian J. Chem. A 1997, 36, 1031.Search in Google Scholar

59. James-Smith, M. A., Shekhawat, D., Moudgil, B. M., Shah, D. O. Langmuir 2007, 23, 1640; https://doi.org/10.1021/la062659+.10.1021/la062659+Search in Google Scholar PubMed

60. Soldi, V., Keiper, J., Romsted, L. S., Cuccovia, I. M., Chaimovich, H. Langmuir 2000, 16, 59; https://doi.org/10.1021/la990336q.Search in Google Scholar

61. Oda, R., Narayanan, J., Hassan, P. A., Manohar, C., Salkar, R. A., Kern, F., Candau, S. J. Langmuir 1998, 14, 4364; https://doi.org/10.1021/la971369d.Search in Google Scholar

62. Kumar, D., Hidayathulla, S., Rub, M. A. J. Mol. Liquids 2018, 271, 254; https://doi.org/10.1016/j.molliq.2018.08.147.Search in Google Scholar

63. Buckingham, S. A., Garve, C. J., Warr, G. G. J. Phys. Chem. 1993, 97, 10236; https://doi.org/10.1021/j100141a054.Search in Google Scholar

64. Kale, K. M., Cussler, E. L., Evans, D. F. J. Phys. Chem. 1980, 84, 593; https://doi.org/10.1021/j100443a007.Search in Google Scholar

65. Bandhopadhyay, A., Moulik, S. P. Colloid Polym. Sci. 1988, 266, 455; https://doi.org/10.1007/bf01420774.Search in Google Scholar

66. Rahman, M., Khan, M. A., Rub, M. A., Hoque, M. A. J. Mol. Liq. 2016, 223, 716; https://doi.org/10.1016/j.molliq.2016.08.049.Search in Google Scholar

67. Rahman, M., Hoque, M. A., Rub, M. A., Khan, M. A. Chin. J. Chem. Eng. 2019, 27, 1895; https://doi.org/10.1016/j.cjche.2018.10.022.Search in Google Scholar

68. Kumar, D., Rub, M. A. J. Mol. Liquids 2017, 238, 389; https://doi.org/10.1016/j.molliq.2017.05.027.Search in Google Scholar

69. Molla, M. R., Rana, S., Rub, M. A., Ahmed, A., Hoque, M. A. J. Surfactants Deterg. 2018, 21, 231; https://doi.org/10.1002/jsde.12011.Search in Google Scholar

70. Islam, M. N., Kato, T. J. Phys. Chem. 2003, 107, 965; https://doi.org/10.1021/jp021212g.Search in Google Scholar

71. Mata, J., Varadea, D., Bahadur, P. Thermochim. Acta 2005, 428, 147; https://doi.org/10.1016/j.tca.2004.11.009.Search in Google Scholar

72. Aguiar, J., Molina-Bolivar, J. A., Peula-Garcia, J. M., Ruiz, C. C. J. Colloid Interface Sci. 2002, 255, 382; https://doi.org/10.1006/jcis.2002.8678.Search in Google Scholar PubMed

73. Kim, H.-U., Lim, K.-H. Colloids Surf. 2004, A 235, 121; https://doi.org/10.1016/j.colsurfa.2003.12.019.Search in Google Scholar

74. Beesley, A., Evans, D. F., Laughlin, R. G. J. Phys. Chem. 1988, 92, 791; https://doi.org/10.1021/j100314a039.Search in Google Scholar

75. Bergenstaahl, B., Stenius, P. J. Phys. Chem. 1987, 91, 5944; https://doi.org/10.1021/j100307a026.Search in Google Scholar

76. Kumar, B., Tikariha, D., Ghosh, K. K., Quagliotto, P. J. Mol. Liq. 2012, 172, 81; https://doi.org/10.1016/j.molliq.2012.05.013.Search in Google Scholar

77. Hamdiyyah, M. A. J. Phys. Chem. 1965, 69, 2720; https://doi.org/10.1021/j100892a039.Search in Google Scholar

78. Bahal, C. K., Kostenbauder, H. B. J. Pharm. Sci. 1964, 53, 1027; https://doi.org/10.1002/jps.2600530908.Search in Google Scholar PubMed

79. Hoque, M. A., Ahmed, M. F., Halim, M. A., Molla, M. R., Rana, S., Rahman, M. A., Rub, M. A. J. Mol. Liquids 2018, 260, 121; https://doi.org/10.1016/j.molliq.2018.03.069.Search in Google Scholar

80. Chen, L. J., Lin, S. Y., Huang, C. C. J. Phys. Chem. 1998, 102, 4350; https://doi.org/10.1021/jp9804345.Search in Google Scholar

81. Abedin, M. J., Mahbub, S., Rahman, M. M., Hoque, M. A., Kumar, D., Khan, J. M., El-Sherbeeny, A. M. Chin. J. Chem. Eng. 2021, 29, 279; https://doi.org/10.1016/j.cjche.2020.07.062.Search in Google Scholar

82. Rahman, M., Anwar, S. J., Molla, M. R., Rana, S., Hoque, M. A., Rub, M. A., Khan, M. A., Kumar, D. J. Mol. Liq. 2019, 292, 111322; https://doi.org/10.1016/j.molliq.2019.111322.Search in Google Scholar

83. Lumry, R., Rajender, S. Biopolymers 1970, 9, 1125; https://doi.org/10.1002/bip.1970.360091002.Search in Google Scholar PubMed

84. dos Santos, T. C., Zocolo, G. J., Morales, D. A., Umbuzeiro, G. A., Zanoni, M. V. B. Food Chem. Toxicol. 2014, 68, 307; https://doi.org/10.1016/j.fct.2014.03.025.Search in Google Scholar PubMed

85. Ramadan, M. S., El-Mallah, N. M., Nabil, G. M., Abd-Elmenem, S. M. J. Dispersion Sci. Technol. 2019, 40, 1110; https://doi.org/10.1080/01932691.2018.1496837.Search in Google Scholar

86. Rangel-Yagui, C. O., Pessoa, A.Jr., Tavares, L. C. J. Pharm. Pharmaceut. Sci. 2005, 8, 147.Search in Google Scholar

87. Bagha, A. T., Holmberg, K. Materials 2013, 6, 580; https://doi.org/10.3390/ma6020580.Search in Google Scholar PubMed PubMed Central

88. Tehrani-Bagha, A. R., Singh, R. G., Holmberg, K. Colloids Surf. A 2013, 417, 133; https://doi.org/10.1016/j.colsurfa.2012.10.006.Search in Google Scholar

89. Tunc, S., Duman, O., Kanci, B. Dyes Pigments 2012, 94, 233; https://doi.org/10.1016/j.dyepig.2012.01.016.Search in Google Scholar

90. Olaseni1, S. E., Osundiya, M. O., Oniya, E. O., Akeremale, O. A., Aboluwoye, C. O., Oyeneyin, O., Orunesajo, A. Int. J. Therm. 2018, 21, 136–142.10.5541/ijot.414585Search in Google Scholar

91. Banipal, T. S., Kaur, R., Banipal, P. K. J. Mol. Liq. 2018, 255, 113; https://doi.org/10.1016/j.molliq.2018.01.089.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2021-3068).


Received: 2021-05-18
Accepted: 2021-09-14
Published Online: 2021-09-27
Published in Print: 2022-03-28

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2021-3068/html
Scroll to top button