Interaction of cationic surfactant with acid yellow dye in absence/presence of organic and inorganic additives: conductivity and dye solubilization methods
-
Md. Ariful Haque
, Shamim Mahbub , Mohammad Majibur Rahman , Md. Anamul Hoque , Dileep Kumar, Norah Salem Alsaiari
, Saikh M. Wabaidur and Fehaid Mohammed Alsubaie
Abstract
In the present study, the conductometric and dye-solubilization techniques have been utilized to investigate the interaction between an anionic dye (acid yellow 23 [AY]) and a cationic surfactant (cetyltrimethylammonium bromide [CTAB]) in presence of organic (ethanol)/inorganic (NaCl) additives. From the conductometric method, two critical micelle concentrations (cmc) were found for AY + CTAB mixture in an aqueous system and the cmc values were found to undergo a change with the variation of AY concentrations. The cmc values of AY + CTAB systems were observed higher in the alcoholic medium, while the same was found to be lower in the NaCl solutions. The change in cmc of AY + CTAB systems shows an U-like curve with an increase of temperature. The negative free energy of micellization (
Funding source: Princess Nourah Bint Abdulrahman University
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Panda, M., Fatma, N., Kamil, M. Z. Phys. Chem. 2019, 233, 707; https://doi.org/10.1515/zpch-2017-1000.Search in Google Scholar
2. Fouda, A. E.-A. E.-S., Zaki, E.-S. G., Khalifa, M. A. Z. Phys. Chem. 2020, 234, 171; https://doi.org/10.1515/zpch-2018-1361.Search in Google Scholar
3. Nour, A. M. A., Negm, N. A., Sayed, G. H., Tawfik, S. M., Badr, E. A. Z. Phys. Chem. 2019, 233, 1761; https://doi.org/10.1515/zpch-2018-1296.Search in Google Scholar
4. Kumar, D., Rub, M. A. Ind. Eng. Chem. Res. 2020, 59, 11072; https://doi.org/10.1021/acs.iecr.0c00678.Search in Google Scholar
5. Kumar, D., Rub, M. A., Asiri, M. A. R. Soc. Open Sci. 2020, 7, 200775; https://doi.org/10.1098/rsos.200775.Search in Google Scholar PubMed PubMed Central
6. Rub, M. A., Kumar, D., Asiri, M. A., Alghamdi, Y. G. Mol. Phys. 2021, 119, e1817595; https://doi.org/10.1080/00268976.2020.1817595.Search in Google Scholar
7. Mahbub, S., Akter, S., Luthfunnessa, Akter, P., Hoque, M. A., Rub, M. A., Kumar, D., Alghamdi, Y. G., Asiri, A. M., Džudžević-Čančar, H. RSC Adv. 2020, 10, 14531; https://doi.org/10.1039/d0ra00213e.Search in Google Scholar PubMed PubMed Central
8. El-Sharaky, E. A., Khamis, E. A., El-Azabawy, O. E., El-Tabei, A. S. Z. Phys. Chem. 2019, 233, 1571; https://doi.org/10.1515/zpch-2018-1243.Search in Google Scholar
9. Khattak, N. S., Shah, L. A., Sohail, M., Ahmad, S., Farooq, M., Ara, L., Kader, S. I. Z. Phys. Chem. 2019, 233, 933; https://doi.org/10.1515/zpch-2018-1241.Search in Google Scholar
10. Rub, M. A., Asiri, A. M., Azum, N., Khan, A., Khan, A. A. P., Khan, S. B., Rahman, M. M., Kumar, D., Al-Youbi, A. O. Z. Phys. Chem. 2013, 227, 1671; https://doi.org/10.1524/zpch.2013.0360.Search in Google Scholar
11. Rosen, M. J. Surfactants and Interfacial Phenomena, 3rd ed.; Wiley-Interscience: New York, 2004.10.1002/0471670561Search in Google Scholar
12. Ali, M. A., Amin, M. R., Mahbub, S., Hossen, M. D., Hoque, M. A., Kumar, D. Z. Phys. Chem. 2021; https://doi.org/10.1515/zpch-2021-3013.Search in Google Scholar
13. Hechig, M., Lev, S., Shitenberg, D., Dicker, D., Kramer, M. R. Chest 2021, 160, e9.10.1016/j.chest.2021.01.028Search in Google Scholar
14. Veldhuizen, R. A. W., Zuo, Y. Y., Petersen, N. O., Lewis, J. F., Possmayer, F. Expet Rev. Respir. Med. 2021, 15, 597; https://doi.org/10.1080/17476348.2021.1865809.Search in Google Scholar
15. Goddard, E. O., Goddard, E. D. In Interactions of Surfactants with Polymer and Proteins; Ananthapadamanabham, K. P., Ed. CRC Press: Boca Raton, 1993.Search in Google Scholar
16. Iram, M., Sultana, H., Usman, M., Ahmad, B., Akram, N., Siddiq, M., Rashid, S. Z. Phys. Chem. 2021; https://doi.org/10.1515/zpch-2020-1706.Search in Google Scholar
17. Azmat, M. A., Khan, I. A., Cheema, H. M., Rajwana, I. A., Khan, A. S., Khan, A. A. J. Zhejiang Univ. Sci. B 2012, 13, 239; https://doi.org/10.1631/jzus.b1100194.Search in Google Scholar
18. Mehta, S. K., Kumar, S., Chaudhary, S., Bhasin, K. K. Nanoscale Res. Lett. 2009, 4, 1197; https://doi.org/10.1007/s11671-009-9377-8.Search in Google Scholar
19. Blus, K., Bemska, J. Autex Res. J. 2010, 10, 64.10.1524/9783486710489.101Search in Google Scholar
20. Sudbeck, E. A., Dubin, P. L., Curran, M. E., Skelton, J. J. Colloid Interface Sci. 1991, 142, 512; https://doi.org/10.1016/0021-9797(91)90081-i.Search in Google Scholar
21. Peláez-Cid, A. A., Romero-Hernández, V., Herrera-González, A. M., Bautista-Hernández, A., Coreño-Alonso, O. Chin. J. Chem. Eng. 2020, 28, 613; https://doi.org/10.1016/j.cjche.2019.04.021.Search in Google Scholar
22. Simoncic, B., Kert, M. Dyes Pigments 2002, 54, 221; https://doi.org/10.1016/s0143-7208(02)00046-3.Search in Google Scholar
23. Mondal, S., Doloi, B., Ghosh, S. Fluid Phase Equil. 2013, 360, 180; https://doi.org/10.1016/j.fluid.2013.09.049.Search in Google Scholar
24. Rashid, S., Usman, M., Shahzad, T., Saeed, M., Haq, A. U., Ibrahim, M., Siddiq, M., Iram, M. Z. Phys. Chem. 2019, 233, 183; https://doi.org/10.1515/zpch-2018-1142.Search in Google Scholar
25. Vijelder, M. D. Z. Phys. Chem. 2003, 217, 653.10.1524/zpch.217.6.653.20450Search in Google Scholar
26. Nemoto, J., Funahashi, H. J. Colloid Interface Sci. 1977, 62, 95; https://doi.org/10.1016/0021-9797(77)90069-8.Search in Google Scholar
27. Tunç, S., Duman, O. Fluid Phase Equil. 2007, 251, 1; https://doi.org/10.1016/j.fluid.2006.10.020.Search in Google Scholar
28. Mahbub, S., Shahriar, I., Iqfath, M., Rub, M. A., Hoque, M. A., Halim, M. A., Khan, M. A., Asiri, A. M. J. Environ. Chem. Eng. 2019, 7, 103364; https://doi.org/10.1016/j.jece.2019.103364.Search in Google Scholar
29. Oakenfull, D. G., Fenwick, D. E. J. Phys. Chem. 1974, 78, 1759; https://doi.org/10.1021/j100610a018.Search in Google Scholar
30. Islam, M., Hossain, M., Mahbub, S., Hoque, M. A., Kumar, D., Wabaidur, S. M., Habila, M. A., Al-Anazy, M. M., Kabir, M. Mol. Phys. 2021, 119, e1925364. https://doi.org/10.1080/00268976.2021.1925364.Search in Google Scholar
31. Bracko, S., Span, J. Dyes Pigments 2001, 50, 77; https://doi.org/10.1016/s0143-7208(01)00042-0.Search in Google Scholar
32. Simoncic, B., Span, J. Dyes Pigments 1998, 36, 1; https://doi.org/10.1016/s0143-7208(97)00102-2.Search in Google Scholar
33. Ali, A., Uzair, S., Farooq, U. Tenside Surfactants Deterg. 2017, 54, 342; https://doi.org/10.3139/113.110509.Search in Google Scholar
34. Mahbub, S., Rub, M. A., Hoque, M. A., Khan, M. A. J. Phys. Org. Chem. 2018, 31, e3872; https://doi.org/10.1002/poc.3872.Search in Google Scholar
35. Rahim, M. A., Mahbub, S., Ahsan, S. M. A., Alam, M., Saha, M., Shahriar, I., Rana, S., Halim, M. A., Hoque, M. A., Kumar, D., Khan, J. M. J. Mol. Liq. 2021, 322, 114683; https://doi.org/10.1016/j.molliq.2020.114683.Search in Google Scholar
36. Hoque, M. A., Patoary, M.-O.-F., Rashid, M. M., Molla, M. R., Rub, M. A. J. Solut. Chem. 2017, 46, 682; https://doi.org/10.1007/s10953-017-0594-y.Search in Google Scholar
37. Rub, M. A., Kumar, D. J. Chem. Eng. Data 2020, 65, 2659; https://doi.org/10.1021/acs.jced.0c00038.Search in Google Scholar
38. Mahbub, S., Rub, M. A., Hoque, M. A., Khan, M. A., Kumar, D. J. Phys. Org. Chem. 2019, 32, e3967; https://doi.org/10.1002/poc.3967.Search in Google Scholar
39. Rodríguez, A., Graciani, M. M., Muñoz, M., Moyá, M. L. Langmuir 2003, 19, 7206; https://doi.org/10.1021/la0301137.Search in Google Scholar
40. Williams, R. J., Phillips, J. N., Mysels, K. J. Trans. Faraday Soc. 1955, 51, 728; https://doi.org/10.1039/tf9555100728.Search in Google Scholar
41. Goscianska, J., Pietrzak, R. R. Catal. Today 2015, 249, 259; https://doi.org/10.1016/j.cattod.2014.11.017.Search in Google Scholar
42. Gautam, R. K., Gautam, P. K., Banerjee, S., Rawat, V., Soni, S., Sharma, S. K., Chattopadhyaya, M. C. J. Environ. Chem. Eng. 2015, 3, 79; https://doi.org/10.1016/j.jece.2014.11.026.Search in Google Scholar
43. Sahnoun, S., Boutahala, M., Tiar, C., Kahoul, A. C. R. Chim. 2018, 21, 391; https://doi.org/10.1016/j.crci.2018.01.008.Search in Google Scholar
44. Kuban, V., Hedbavny, J., Jancarova, I., Vrchlabsky, M. Collect. Czech Chem. Commun. 1989, 54, 622.10.1135/cccc19890622Search in Google Scholar
45. Sharma, R., Kamal, A., Mahajan, R. K. Soft Matter 2016, 12, 1736; https://doi.org/10.1039/c5sm02667a.Search in Google Scholar PubMed
46. Kundu, S., Panigrahi, S., Pal, A., Ghosh, S. K., Nath, S., Praharaj, S., Basu, S., Pal, T. Dyes Pigments 2006, 69, 177; https://doi.org/10.1016/j.dyepig.2005.03.010.Search in Google Scholar
47. Chakraborty, T., Chakraborty, I., Ghosh, S. Langmuir 2006, 22, 9905; https://doi.org/10.1021/la0621214.Search in Google Scholar PubMed
48. Koya, P. A., Wagay, T. A., Ismail, K. J. Solut. Chem. 2015, 44, 100; https://doi.org/10.1007/s10953-014-0284-y.Search in Google Scholar
49. Ludzik, K., Kustrzepa, K., Piekarski, H., Jozwiak, M. J. Chem. Eng. Data 2016, 61, 1047; https://doi.org/10.1021/jev061i005_864350.Search in Google Scholar
50. Nazir, N., Ahanger, M. S., Akbar, A. J. Dispersion Sci. Technol. 2009, 30, 51; https://doi.org/10.1080/01932690802477264.Search in Google Scholar
51. Shah, S. K., Chatterjee, S. K., Bhattarai, A. J. Mol. Liq. 2016, 222, 906; https://doi.org/10.1016/j.molliq.2016.07.098.Search in Google Scholar
52. Das, S., Mondal, S., Ghosh, S. J. Chem. Eng. Data 2013, 58, 2586; https://doi.org/10.1021/je4004788.Search in Google Scholar
53. Emerson, M. F., Holtzer, A. Hydrophobic bond in micellar systems. J. Phys. Chem. 1967, 71, 3320; https://doi.org/10.1021/j100869a031.Search in Google Scholar PubMed
54. Marszall, L. Langmuir 1990, 6, 347; https://doi.org/10.1021/la00092a010.Search in Google Scholar
55. Para, G., Jarek, E., Warszynski, P. Adv. Colloid Interface Sci. 2006, 122, 39; https://doi.org/10.1016/j.cis.2006.06.017.Search in Google Scholar PubMed
56. Kresheck, G. C. In Water: A Comprehensive Treatise; Franks, F., Ed. Plenum: New York, Vol. 4, 1975.Search in Google Scholar
57. Hoque, M. A., Mahbub, S., Rub, M. A., Rana, S., Khan, M. A. Kor. J. Chem. Eng. 2018, 35, 2269; https://doi.org/10.1007/s11814-018-0120-y.Search in Google Scholar
58. Shamsipur, M., Alizadeh, N., Gharibi, H. Indian J. Chem. A 1997, 36, 1031.Search in Google Scholar
59. James-Smith, M. A., Shekhawat, D., Moudgil, B. M., Shah, D. O. Langmuir 2007, 23, 1640; https://doi.org/10.1021/la062659+.10.1021/la062659+Search in Google Scholar PubMed
60. Soldi, V., Keiper, J., Romsted, L. S., Cuccovia, I. M., Chaimovich, H. Langmuir 2000, 16, 59; https://doi.org/10.1021/la990336q.Search in Google Scholar
61. Oda, R., Narayanan, J., Hassan, P. A., Manohar, C., Salkar, R. A., Kern, F., Candau, S. J. Langmuir 1998, 14, 4364; https://doi.org/10.1021/la971369d.Search in Google Scholar
62. Kumar, D., Hidayathulla, S., Rub, M. A. J. Mol. Liquids 2018, 271, 254; https://doi.org/10.1016/j.molliq.2018.08.147.Search in Google Scholar
63. Buckingham, S. A., Garve, C. J., Warr, G. G. J. Phys. Chem. 1993, 97, 10236; https://doi.org/10.1021/j100141a054.Search in Google Scholar
64. Kale, K. M., Cussler, E. L., Evans, D. F. J. Phys. Chem. 1980, 84, 593; https://doi.org/10.1021/j100443a007.Search in Google Scholar
65. Bandhopadhyay, A., Moulik, S. P. Colloid Polym. Sci. 1988, 266, 455; https://doi.org/10.1007/bf01420774.Search in Google Scholar
66. Rahman, M., Khan, M. A., Rub, M. A., Hoque, M. A. J. Mol. Liq. 2016, 223, 716; https://doi.org/10.1016/j.molliq.2016.08.049.Search in Google Scholar
67. Rahman, M., Hoque, M. A., Rub, M. A., Khan, M. A. Chin. J. Chem. Eng. 2019, 27, 1895; https://doi.org/10.1016/j.cjche.2018.10.022.Search in Google Scholar
68. Kumar, D., Rub, M. A. J. Mol. Liquids 2017, 238, 389; https://doi.org/10.1016/j.molliq.2017.05.027.Search in Google Scholar
69. Molla, M. R., Rana, S., Rub, M. A., Ahmed, A., Hoque, M. A. J. Surfactants Deterg. 2018, 21, 231; https://doi.org/10.1002/jsde.12011.Search in Google Scholar
70. Islam, M. N., Kato, T. J. Phys. Chem. 2003, 107, 965; https://doi.org/10.1021/jp021212g.Search in Google Scholar
71. Mata, J., Varadea, D., Bahadur, P. Thermochim. Acta 2005, 428, 147; https://doi.org/10.1016/j.tca.2004.11.009.Search in Google Scholar
72. Aguiar, J., Molina-Bolivar, J. A., Peula-Garcia, J. M., Ruiz, C. C. J. Colloid Interface Sci. 2002, 255, 382; https://doi.org/10.1006/jcis.2002.8678.Search in Google Scholar PubMed
73. Kim, H.-U., Lim, K.-H. Colloids Surf. 2004, A 235, 121; https://doi.org/10.1016/j.colsurfa.2003.12.019.Search in Google Scholar
74. Beesley, A., Evans, D. F., Laughlin, R. G. J. Phys. Chem. 1988, 92, 791; https://doi.org/10.1021/j100314a039.Search in Google Scholar
75. Bergenstaahl, B., Stenius, P. J. Phys. Chem. 1987, 91, 5944; https://doi.org/10.1021/j100307a026.Search in Google Scholar
76. Kumar, B., Tikariha, D., Ghosh, K. K., Quagliotto, P. J. Mol. Liq. 2012, 172, 81; https://doi.org/10.1016/j.molliq.2012.05.013.Search in Google Scholar
77. Hamdiyyah, M. A. J. Phys. Chem. 1965, 69, 2720; https://doi.org/10.1021/j100892a039.Search in Google Scholar
78. Bahal, C. K., Kostenbauder, H. B. J. Pharm. Sci. 1964, 53, 1027; https://doi.org/10.1002/jps.2600530908.Search in Google Scholar PubMed
79. Hoque, M. A., Ahmed, M. F., Halim, M. A., Molla, M. R., Rana, S., Rahman, M. A., Rub, M. A. J. Mol. Liquids 2018, 260, 121; https://doi.org/10.1016/j.molliq.2018.03.069.Search in Google Scholar
80. Chen, L. J., Lin, S. Y., Huang, C. C. J. Phys. Chem. 1998, 102, 4350; https://doi.org/10.1021/jp9804345.Search in Google Scholar
81. Abedin, M. J., Mahbub, S., Rahman, M. M., Hoque, M. A., Kumar, D., Khan, J. M., El-Sherbeeny, A. M. Chin. J. Chem. Eng. 2021, 29, 279; https://doi.org/10.1016/j.cjche.2020.07.062.Search in Google Scholar
82. Rahman, M., Anwar, S. J., Molla, M. R., Rana, S., Hoque, M. A., Rub, M. A., Khan, M. A., Kumar, D. J. Mol. Liq. 2019, 292, 111322; https://doi.org/10.1016/j.molliq.2019.111322.Search in Google Scholar
83. Lumry, R., Rajender, S. Biopolymers 1970, 9, 1125; https://doi.org/10.1002/bip.1970.360091002.Search in Google Scholar PubMed
84. dos Santos, T. C., Zocolo, G. J., Morales, D. A., Umbuzeiro, G. A., Zanoni, M. V. B. Food Chem. Toxicol. 2014, 68, 307; https://doi.org/10.1016/j.fct.2014.03.025.Search in Google Scholar PubMed
85. Ramadan, M. S., El-Mallah, N. M., Nabil, G. M., Abd-Elmenem, S. M. J. Dispersion Sci. Technol. 2019, 40, 1110; https://doi.org/10.1080/01932691.2018.1496837.Search in Google Scholar
86. Rangel-Yagui, C. O., Pessoa, A.Jr., Tavares, L. C. J. Pharm. Pharmaceut. Sci. 2005, 8, 147.Search in Google Scholar
87. Bagha, A. T., Holmberg, K. Materials 2013, 6, 580; https://doi.org/10.3390/ma6020580.Search in Google Scholar PubMed PubMed Central
88. Tehrani-Bagha, A. R., Singh, R. G., Holmberg, K. Colloids Surf. A 2013, 417, 133; https://doi.org/10.1016/j.colsurfa.2012.10.006.Search in Google Scholar
89. Tunc, S., Duman, O., Kanci, B. Dyes Pigments 2012, 94, 233; https://doi.org/10.1016/j.dyepig.2012.01.016.Search in Google Scholar
90. Olaseni1, S. E., Osundiya, M. O., Oniya, E. O., Akeremale, O. A., Aboluwoye, C. O., Oyeneyin, O., Orunesajo, A. Int. J. Therm. 2018, 21, 136–142.10.5541/ijot.414585Search in Google Scholar
91. Banipal, T. S., Kaur, R., Banipal, P. K. J. Mol. Liq. 2018, 255, 113; https://doi.org/10.1016/j.molliq.2018.01.089.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2021-3068).
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Article
- State-of-art of silver and gold nanoparticles synthesis routes, characterization and applications: a review
- Original Papers
- Microstructural characterization and corrosion behaviour of ultrasound-assisted synthesis of Ni–xCo–yTiO2 nanocomposites in alkaline environments
- Interaction of cationic surfactant with acid yellow dye in absence/presence of organic and inorganic additives: conductivity and dye solubilization methods
- Kinetics of methylene blue dye adsorptive removal using halloysite nanocomposite hydrogels
- Molecular interaction investigation of some alkaline earth metal salts in aqueous citric acid at various temperatures by physiochemical studies
- Impacts of polyols and temperature on the micellization, interaction and thermodynamics behavior of the mixture of tetradecyltrimethylammonium bromide and polyvinyl alcohol
- The physicochemical and DNA binding studies of some medicinal compounds in solutions
Articles in the same Issue
- Frontmatter
- Review Article
- State-of-art of silver and gold nanoparticles synthesis routes, characterization and applications: a review
- Original Papers
- Microstructural characterization and corrosion behaviour of ultrasound-assisted synthesis of Ni–xCo–yTiO2 nanocomposites in alkaline environments
- Interaction of cationic surfactant with acid yellow dye in absence/presence of organic and inorganic additives: conductivity and dye solubilization methods
- Kinetics of methylene blue dye adsorptive removal using halloysite nanocomposite hydrogels
- Molecular interaction investigation of some alkaline earth metal salts in aqueous citric acid at various temperatures by physiochemical studies
- Impacts of polyols and temperature on the micellization, interaction and thermodynamics behavior of the mixture of tetradecyltrimethylammonium bromide and polyvinyl alcohol
- The physicochemical and DNA binding studies of some medicinal compounds in solutions