Microstructural characterization and corrosion behaviour of ultrasound-assisted synthesis of Ni–xCo–yTiO2 nanocomposites in alkaline environments
Abstract
Electroplated protective thin film is highly promising materials for advanced applications such as high corrosion resistance and energy conversion and storage. This work is to investigate the effect of Co content and TiO2 on the corrosion resistance of Ni–xCo–yTiO2 nanocomposites in alkaline media. The nanocrystalline Ni–xCo–yTiO2 composites were electroplated using the sulfate-gluconate bath containing the suspended TiO2 nanograins under ultrasound waves and mechanical stirring. The microstructure and corrosion behavior of the electroplated Ni–xCo–yTiO2 nanocomposites have been investigated via X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The XRD pattern of the electroplated Ni–Co matrices with 1–75% of cobalt arranged in face-centered cubic (FCC) system, while the electroplated Ni–Co matrices of further Co% more than 76% converted to hexagonal closed-package (HCP) crystal system. The surface of the Ni–xCo–yTiO2 nanocomposites after immersion in 1.0 M KOH electrolytes was investigated via SEM, atomic force microscopy and EDX. The results displayed that the rate of corrosion of the different composites decreased by combining Ni, Co and the inclusion of TiO2. The improved corrosion resistance of Ni–47Co–3.77TiO2 composites is due to the formation of Ni/Co oxy/hydroxide layer and rebelling effect of OH− by TiO2 sites, which reduces the attacking effect of OH−, O2, and H2O, and notably retards the overall corrosion processes.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Lublow, M., Schedel-Niedrig, T. Z. Phys. Chem. 2020, 234, 1097; https://doi.org/10.1515/zpch-2019-1478.Suche in Google Scholar
2. Melder, J., Bogdanoff, P., Zaharieva, I., Fiechter, S., Dau, H., Kurz, P. Z. Phys. Chem. 2020, 234, 925; https://doi.org/10.1515/zpch-2019-1491.Suche in Google Scholar
3. Krysiak, O. A., Cichowicz, G., Conzuelo, F., Cyranski, M. K., Augustynski, J. Z. Phys. Chem. 2020, 234, 633; https://doi.org/10.1515/zpch-2019-1431.Suche in Google Scholar
4. Du, X., Tai, Y., Liu, H., Zhang, J., Su, M., Li, F., Wang, S. Z. Phys. Chem. 2020, 34, 1645–1659; https://doi.org/10.1515/zpch-2018-1317.Suche in Google Scholar
5. Atta-Ul-Haq, Saeed, M., Jamal, M. A., Akram, N., Bokhari, T. H., Afaq, U. Z. Phys. Chem. 2019, 233, 1047; https://doi.org/10.1515/zpch-2018-1226.Suche in Google Scholar
6. Sharma, A. K., Acharya, S. Z. Phys. Chem. 2019, 233, 691; https://doi.org/10.1515/zpch-2018-1181.Suche in Google Scholar
7. Himstedt, R., Hinrichs, D., Extinction, D. Z. Phys. Chem. 2019, 233, 3; https://doi.org/10.1515/zpch-2018-11657.Suche in Google Scholar
8. Majid, F., Rauf, J., Ata, S., Bibi, I., Yameen, M., Iqbal, M. Z. Phys. Chem. 2019, 33, 1411–1430; https://doi.org/10.1515/zpch-2018-1305.Suche in Google Scholar
9. Garcia, I., Fransaer, J., Celis, J. P. Surf. Coating. Technol. 2001, 148, 171; https://doi.org/10.1016/s0257-8972(01)01336-6.Suche in Google Scholar
10. Di Bari, G. A. In Morden Electroplating, 4th ed.; Schlesinger, M., Paunovic, M., Eds. John Wiley & Sons: New York, 2000; p. 139.Suche in Google Scholar
11. Field, S., Weill, A. D. Electro-Plating, 2nd ed.; Sir Isaac Pitman & Sons: London, 1935; p. 136.Suche in Google Scholar
12. Cai, F., Cai, X., Zhang, S., Jiang, C. J. Alloys Compd. 2018, 738, 72–78; https://doi.org/10.1016/j.jallcom.2017.11.335.Suche in Google Scholar
13. Li, Y. D., Jiang, H., Wang, D., Ge, H. Y. Surf. Coating. Technol. 2008, 202, 4952–4956; https://doi.org/10.1016/j.surfcoat.2008.04.093.Suche in Google Scholar
14. Negem, M., Nady, H., El-Rabiei, M. M. Int. J. Hydrogen Energy 2019, 44, 11411; https://doi.org/10.1016/J.IJHYDENE.2019.03.128.Suche in Google Scholar
15. Negem, M., Nady, H. Int. J. Hydrogen Energy 2017, 42, 28386; https://doi.org/10.1016/j.ijhydene.2017.09.147.Suche in Google Scholar
16. Nady, H., Negem, M. Int. J. Hydrogen Energy 2018, 43, 4942; https://doi.org/10.1016/j.ijhydene.2018.01.119.Suche in Google Scholar
17. Negem, M., Nady, H., Dunnill, C. W. J. Bio- Tribo-Corrosion 2020, 6, 1–14; https://doi.org/10.1007/s40735-020-00413-3.Suche in Google Scholar
18. Negem, M., Helal, N., Roy, S., Elfeky, H., Kardas, G. J. Bio- Tribo-Corrosion 2020, 6, 49. https://doi.org/10.1007/s40735-020-00346-x.Suche in Google Scholar
19. El-Rabiei, M. M., Bahrawy, A., El-Feky, H. E., Nady, H., Arfa, M., Negem, M. J. Bio- Tribo-Corrosion 2020, 6, 52; https://doi.org/10.1007/s40735-020-00350-1.Suche in Google Scholar
20. Nady, H., Negem, M. RSC Adv. 2016, 6, 51111–51119; https://doi.org/10.1039/c6ra08348j.Suche in Google Scholar
21. Badawy, W. A., Nady, H., Negem, M. Int. J. Hydrogen Energy 2014, 39, 10824–10832; https://doi.org/10.1016/j.ijhydene.2014.05.049.Suche in Google Scholar
22. Nady, H., Negem, M. Z. Phys. Chem. 2017, 231, 1159–1178; https://doi.org/10.1515/zpch-2016-0893.Suche in Google Scholar
23. El-Feky, H., Negem, M., Roy, S., Helal, N., Baraka, A. Sci. China Chem. 2013, 56, 1446.10.1007/s11426-013-4935-4Suche in Google Scholar
24. Ranjith, B., Paruthimal Kalaignan, G. Appl. Surf. Sci. 2010, 257, 42–47; https://doi.org/10.1016/j.apsusc.2010.06.029.Suche in Google Scholar
25. Alizadeh, M., Mirak, M., Salahinejad, E., Ghaffari, M., Amini, R., Roosta, A. J. Alloys Compd. 2014, 611, 161–166; https://doi.org/10.1016/j.jallcom.2014.04.181.Suche in Google Scholar
26. Bakhit, B. Surf. Coating. Technol. 2015, 275, 324–331; https://doi.org/10.1016/j.surfcoat.2015.04.046.Suche in Google Scholar
27. Calderón, J. A., Henao, J. E., Gómez, M. A. Electrochim. Acta 2014, 124, 190–198; https://doi.org/10.1016/j.electacta.2013.08.185.Suche in Google Scholar
28. Yang, Y., Cheng, Y. F. Electrochim. Acta 2013, 109, 638–644; https://doi.org/10.1016/j.electacta.2013.07.106.Suche in Google Scholar
29. Dai, P. Q., Zhong, Y. H., Zhou, X. Surf. Eng. 2014, 27, 71–76.10.1179/174329409X433867Suche in Google Scholar
30. Dheeraj, P. R., Patra, A., Sengupta, S., Das, S., Das, K. J. Alloys Compd. 2017, 729, 1093–1107; https://doi.org/10.1016/j.jallcom.2017.09.035.Suche in Google Scholar
31. Yang, Y., Cheng, Y. F. Surf. Coating. Technol. 2013, 216, 282–288; https://doi.org/10.1016/j.surfcoat.2012.11.059.Suche in Google Scholar
32. Das, S., Banthia, S., Patra, A., Sengupta, S., Singh, S. B. J. Alloys Compd. 2018, 738, 394–404; https://doi.org/10.1016/j.jallcom.2017.12.093.Suche in Google Scholar
33. Ünal, E., Karahan, İ. H. J. Alloys Compd. 2018, 763, 329–341; https://doi.org/10.1016/j.jallcom.2018.05.312.Suche in Google Scholar
34. Ataie, S. A., Zakeri, A. J. Alloys Compd. 2016, 674, 315–322; https://doi.org/10.1016/j.jallcom.2016.02.111.Suche in Google Scholar
35. Tudela, I., Zhang, Y., Pal, M., Kerr, I., Cobley, A. J. Surf. Coating. Technol. 2015, 276, 89–105; https://doi.org/10.1016/j.surfcoat.2015.06.030.Suche in Google Scholar
36. Bakhit, B., Akbari, A., Nasirpouri, F., Hosseini, M. G. Appl. Surf. Sci. 2014, 307, 351–359; https://doi.org/10.1016/j.apsusc.2014.04.037.Suche in Google Scholar
37. Bakhit, B., Akbari, A. J. Alloys Compd. 2013, 560, 92–104; https://doi.org/10.1016/j.jallcom.2013.01.122.Suche in Google Scholar
38. Wang, C., Zhong, Y., Ren, W., Lei, Z., Ren, Z., Jia, J., Jiang, A. Appl. Surf. Sci. 2008, 254, 5649–5654; https://doi.org/10.1016/j.apsusc.2008.03.072.Suche in Google Scholar
39. Wang, C., Zhong, Y. B., Wang, J., Wang, Z. Q., Ren, W. L., Lei, Z. S., Ren, Z. M. J. Electroanal. Chem. 2009, 630, 42–48; https://doi.org/10.1016/j.jelechem.2009.02.018.Suche in Google Scholar
40. Aaboubi, O., Msellak, K. Appl. Surf. Sci. 2016, 396, 375–383.10.1016/j.apsusc.2016.10.164Suche in Google Scholar
41. Zhong, Y., Zhou, P., Zhou, J., Wang, H., Fan, L., Dong, L., Zheng, T., Shen, W. Appl. Surf. Sci. 2014, 309, 278–284; https://doi.org/10.1016/j.apsusc.2014.05.030.Suche in Google Scholar
42. Sova, V., Bollhalder, H. Plat. Surf. Finish. 1988, 75, 53.Suche in Google Scholar
43. Zahavi, J., Hazan, J. Plat. Surf. Finish. 1983, 70, 57–61.Suche in Google Scholar
44. Tulsi, S. S. Trans. Inst. Met. Finish. 1983, 61, 147; https://doi.org/10.1080/00202967.1983.11870654.Suche in Google Scholar
45. Ebdon, P. R. Plat. Surf. Finish. 1988, 75, 65.Suche in Google Scholar
46. Oberle, R. R., Scanlon, M. R., Cammarata, R. C., Searson, P. C. Appl. Phys. Lett. 1995, 66, 19; https://doi.org/10.1063/1.114167.Suche in Google Scholar
47. Shao, I., Vereecken, P. M., Cammarata, R. C., Searson, P. C. J. Electrochem. Soc. 2002, 149, C610; https://doi.org/10.1149/1.1514672.Suche in Google Scholar
48. Chan, K. C., Wang, C. L., Zhang, K. F., Pang, G. Scripta Mater. 2004, 51, 605; https://doi.org/10.1016/j.scriptamat.2004.05.026.Suche in Google Scholar
49. Wang, W., Hou, F. Y., Wang, H., Guo, H. T. Scripta Mater. 2005, 53, 613; https://doi.org/10.1016/j.scriptamat.2005.04.002.Suche in Google Scholar
50. Xu, B. S., Wang, H. D., Dong, S. Y., Jiang, B., Tu, W. Y. Electrochem. Commun. 2005, 7, 572; https://doi.org/10.1016/j.elecom.2005.03.014.Suche in Google Scholar
51. Shi, L., Sun, C. F., Gao, P., Zhou, F., Liu, W. M. Surf. Coating. Technol. 2006, 200, 4870–4875; https://doi.org/10.1016/j.surfcoat.2005.04.037.Suche in Google Scholar
52. Oh, S. T., Sando, M., Niihara, K. J. Mater. Sci. 2001, 36, 1817–1821; https://doi.org/10.1023/a:1017541112681.10.1023/A:1017541112681Suche in Google Scholar
53. Srivastava, M., William Grips, V. K., Jain, A., Rajam, K. S. Surf. Coating. Technol. 2007, 202, 310–318; https://doi.org/10.1016/j.surfcoat.2007.05.078.Suche in Google Scholar
54. Bahadormanesh, B., Dolati, A. J. Alloys Compd. 2010, 504, 514–518; https://doi.org/10.1016/j.jallcom.2010.05.154.Suche in Google Scholar
55. Srivastava, M., William Grips, V. K., Rajam, K. S. Appl. Surf. Sci. 2010, 257, 717–722; https://doi.org/10.1016/j.apsusc.2010.07.046.Suche in Google Scholar
56. Srivastava, M., William Grips, V. K., Rajam, K. S. J. Appl. Electrochem. 2008, 38, 669–677; https://doi.org/10.1007/s10800-008-9486-6.Suche in Google Scholar
57. Srivastava, M., William Grips, V. K., Rajam, K. S. J. Alloys Compd. 2009, 469, 362–365; https://doi.org/10.1016/j.jallcom.2008.01.120.Suche in Google Scholar
58. Scherrer, P. Göttinger Nachr. Ges. 1918, 2, 98.Suche in Google Scholar
59. Wielage, B., Lampke, T., Zacher, M., Dietrich, D. Key Eng. Mater. 2008, 384, 283; https://doi.org/10.4028/www.scientific.net/kem.384.283.Suche in Google Scholar
60. Cai, C., Zhu, X. B., Zheng, G. Q., Yuan, Y. N., Huang, X. Q., Cao, F. H., Yang, J. F., Zhang, Z. Surf. Coating. Technol. 2011, 205, 3448; https://doi.org/10.1016/j.surfcoat.2010.12.002.Suche in Google Scholar
61. Kuo, S., Chen, Y., Ger, M., Hwu, W. Mater. Chem. Phys. 2004, 86, 5; https://doi.org/10.1016/j.matchemphys.2003.11.040.Suche in Google Scholar
62. Okuyama, H., Iwata, N., Yamamoto, H. Phys. E: Low-dimens. Syst. Nanostruct. 2007, 37, 49; https://doi.org/10.1016/j.physe.2006.10.016.Suche in Google Scholar
63. Ali, J. A., Ambrose, J. R. Corrosion Sci. 1991, 32, 799; https://doi.org/10.1016/0010-938x(91)90025-k.Suche in Google Scholar
64. Sato, N., Okamoto, G. In Comprehensive Treatise of Electrochemistry; Bockris, J. O. M., Conway, B. E., Yeager, E., White, R. E., Eds. Plenum Press: New York, NY, Vol. 4, 1981; p. 201.Suche in Google Scholar
65. McIntyre, N. S., Rummery, T. E., Cook, M. G., Owen, D. J. Electrochem. Soc. 1976, 123, 1164; https://doi.org/10.1149/1.2133027.Suche in Google Scholar
66. Hummel, R. E., Smith, R. J., Verinkjr, E. D. Corrosion Sci. 1987, 27, 803; https://doi.org/10.1016/0010-938x(87)90038-2.Suche in Google Scholar
67. Correia, A. N., Machado, S. A. S. J. Appl. Electrochem. 2003, 33, 367; https://doi.org/10.1023/a:1024457930014.10.1023/A:1024457930014Suche in Google Scholar
68. Al‑Murshedi, A., Al‑Yasari, A., Alesary, H., Ismail, H. Chem. Papers 2020, 74, 699–709.10.1007/s11696-019-01025-zSuche in Google Scholar
69. Abd El Rehim, S. S., El Basosi, A. A., El Zein, S. M., Osman, M. M. Collect. Czech Chem. Commun. 1994, 59, 2383–2389; https://doi.org/10.1135/cccc19942383.Suche in Google Scholar
70. Seghiouer, A., Chevalet, J., Barhoun, A., Lantelme, F. J. Electroanal. Chem. 1998, 442, 113; https://doi.org/10.1016/s0022-0728(97)00498-1.Suche in Google Scholar
71. Huang, Y. J., Guo, Y. Z., Fan, H. B., Shen, J. Mater. Lett. 2012, 89, 229–232; https://doi.org/10.1016/j.matlet.2012.08.114.Suche in Google Scholar
72. Sadegha, A., Khosroshahi, R., Sadeghian, Z. J. Surf. Invest.: X-ray Synchrotron Neutron Tech. 2011, 5, 186–192.10.1134/S1027451011020030Suche in Google Scholar
73. Jiang, W., Shen, L., Qiu, M., Wang, X., Fan, M., Tian, Z. J. Alloys Compd. 2018, 762, 115–124; https://doi.org/10.1016/j.jallcom.2018.05.097.Suche in Google Scholar
74. Bahadormanesh, B., Dolati, A., Ahmadi, M. R. J. Alloys Compd. 2011, 509, 9406–9412; https://doi.org/10.1016/j.jallcom.2011.07.054.Suche in Google Scholar
75. Wang, L., Zhang, J., Gao, Y., Xue, Q., Hua, L., Xu, T. Scripta Mater. 2006, 55, 657–660; https://doi.org/10.1016/j.scriptamat.2006.04.009.Suche in Google Scholar
76. Kang, J., Yang, Y., Shao, H. Corrosion Sci. 2009, 51, 1907–1913; https://doi.org/10.1016/j.corsci.2009.04.032.Suche in Google Scholar
77. Komath, M. Mater. Chem. Phys. 1996, 45, 171–175; https://doi.org/10.1016/0254-0584(96)80098-8.Suche in Google Scholar
78. Chen, X. H., Chen, C. S., Xiao, H. N., Cheng, F. Q., Zhang, G., Yi, G. J. Surf. Coating. Technol. 2005, 191, 351; https://doi.org/10.1016/j.surfcoat.2004.04.055.Suche in Google Scholar
79. Negem, M., Nady, H. J. Mater. Eng. Perform. 2020, 29, 6940–6951; https://doi.org/10.1007/s11665-020-05180-3.Suche in Google Scholar
80. Bahrawy, A., El Rabiei, M., Elsayed, N., Arafa, M., Negem, M. Anti-corrosion Meth. Mater. 2021, 68, 167–181.10.1108/ACMM-07-2020-2339Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review Article
- State-of-art of silver and gold nanoparticles synthesis routes, characterization and applications: a review
- Original Papers
- Microstructural characterization and corrosion behaviour of ultrasound-assisted synthesis of Ni–xCo–yTiO2 nanocomposites in alkaline environments
- Interaction of cationic surfactant with acid yellow dye in absence/presence of organic and inorganic additives: conductivity and dye solubilization methods
- Kinetics of methylene blue dye adsorptive removal using halloysite nanocomposite hydrogels
- Molecular interaction investigation of some alkaline earth metal salts in aqueous citric acid at various temperatures by physiochemical studies
- Impacts of polyols and temperature on the micellization, interaction and thermodynamics behavior of the mixture of tetradecyltrimethylammonium bromide and polyvinyl alcohol
- The physicochemical and DNA binding studies of some medicinal compounds in solutions
Artikel in diesem Heft
- Frontmatter
- Review Article
- State-of-art of silver and gold nanoparticles synthesis routes, characterization and applications: a review
- Original Papers
- Microstructural characterization and corrosion behaviour of ultrasound-assisted synthesis of Ni–xCo–yTiO2 nanocomposites in alkaline environments
- Interaction of cationic surfactant with acid yellow dye in absence/presence of organic and inorganic additives: conductivity and dye solubilization methods
- Kinetics of methylene blue dye adsorptive removal using halloysite nanocomposite hydrogels
- Molecular interaction investigation of some alkaline earth metal salts in aqueous citric acid at various temperatures by physiochemical studies
- Impacts of polyols and temperature on the micellization, interaction and thermodynamics behavior of the mixture of tetradecyltrimethylammonium bromide and polyvinyl alcohol
- The physicochemical and DNA binding studies of some medicinal compounds in solutions