Startseite Naturwissenschaften Microstructural characterization and corrosion behaviour of ultrasound-assisted synthesis of Ni–xCo–yTiO2 nanocomposites in alkaline environments
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Microstructural characterization and corrosion behaviour of ultrasound-assisted synthesis of Ni–xCo–yTiO2 nanocomposites in alkaline environments

  • Nady ElSayed , Mohamed M. El-Rabiei und Mosaad Negem EMAIL logo
Veröffentlicht/Copyright: 27. Mai 2021

Abstract

Electroplated protective thin film is highly promising materials for advanced applications such as high corrosion resistance and energy conversion and storage. This work is to investigate the effect of Co content and TiO2 on the corrosion resistance of Ni–xCo–yTiO2 nanocomposites in alkaline media. The nanocrystalline Ni–xCo–yTiO2 composites were electroplated using the sulfate-gluconate bath containing the suspended TiO2 nanograins under ultrasound waves and mechanical stirring. The microstructure and corrosion behavior of the electroplated Ni–xCo–yTiO2 nanocomposites have been investigated via X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The XRD pattern of the electroplated Ni–Co matrices with 1–75% of cobalt arranged in face-centered cubic (FCC) system, while the electroplated Ni–Co matrices of further Co% more than 76% converted to hexagonal closed-package (HCP) crystal system. The surface of the Ni–xCo–yTiO2 nanocomposites after immersion in 1.0 M KOH electrolytes was investigated via SEM, atomic force microscopy and EDX. The results displayed that the rate of corrosion of the different composites decreased by combining Ni, Co and the inclusion of TiO2. The improved corrosion resistance of Ni–47Co–3.77TiO2 composites is due to the formation of Ni/Co oxy/hydroxide layer and rebelling effect of OH by TiO2 sites, which reduces the attacking effect of OH, O2, and H2O, and notably retards the overall corrosion processes.


Corresponding author: Mosaad Negem, Chemistry Department, Faculty of Science, Fayoum University, Faiyum, Egypt, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Lublow, M., Schedel-Niedrig, T. Z. Phys. Chem. 2020, 234, 1097; https://doi.org/10.1515/zpch-2019-1478.Suche in Google Scholar

2. Melder, J., Bogdanoff, P., Zaharieva, I., Fiechter, S., Dau, H., Kurz, P. Z. Phys. Chem. 2020, 234, 925; https://doi.org/10.1515/zpch-2019-1491.Suche in Google Scholar

3. Krysiak, O. A., Cichowicz, G., Conzuelo, F., Cyranski, M. K., Augustynski, J. Z. Phys. Chem. 2020, 234, 633; https://doi.org/10.1515/zpch-2019-1431.Suche in Google Scholar

4. Du, X., Tai, Y., Liu, H., Zhang, J., Su, M., Li, F., Wang, S. Z. Phys. Chem. 2020, 34, 1645–1659; https://doi.org/10.1515/zpch-2018-1317.Suche in Google Scholar

5. Atta-Ul-Haq, Saeed, M., Jamal, M. A., Akram, N., Bokhari, T. H., Afaq, U. Z. Phys. Chem. 2019, 233, 1047; https://doi.org/10.1515/zpch-2018-1226.Suche in Google Scholar

6. Sharma, A. K., Acharya, S. Z. Phys. Chem. 2019, 233, 691; https://doi.org/10.1515/zpch-2018-1181.Suche in Google Scholar

7. Himstedt, R., Hinrichs, D., Extinction, D. Z. Phys. Chem. 2019, 233, 3; https://doi.org/10.1515/zpch-2018-11657.Suche in Google Scholar

8. Majid, F., Rauf, J., Ata, S., Bibi, I., Yameen, M., Iqbal, M. Z. Phys. Chem. 2019, 33, 1411–1430; https://doi.org/10.1515/zpch-2018-1305.Suche in Google Scholar

9. Garcia, I., Fransaer, J., Celis, J. P. Surf. Coating. Technol. 2001, 148, 171; https://doi.org/10.1016/s0257-8972(01)01336-6.Suche in Google Scholar

10. Di Bari, G. A. In Morden Electroplating, 4th ed.; Schlesinger, M., Paunovic, M., Eds. John Wiley & Sons: New York, 2000; p. 139.Suche in Google Scholar

11. Field, S., Weill, A. D. Electro-Plating, 2nd ed.; Sir Isaac Pitman & Sons: London, 1935; p. 136.Suche in Google Scholar

12. Cai, F., Cai, X., Zhang, S., Jiang, C. J. Alloys Compd. 2018, 738, 72–78; https://doi.org/10.1016/j.jallcom.2017.11.335.Suche in Google Scholar

13. Li, Y. D., Jiang, H., Wang, D., Ge, H. Y. Surf. Coating. Technol. 2008, 202, 4952–4956; https://doi.org/10.1016/j.surfcoat.2008.04.093.Suche in Google Scholar

14. Negem, M., Nady, H., El-Rabiei, M. M. Int. J. Hydrogen Energy 2019, 44, 11411; https://doi.org/10.1016/J.IJHYDENE.2019.03.128.Suche in Google Scholar

15. Negem, M., Nady, H. Int. J. Hydrogen Energy 2017, 42, 28386; https://doi.org/10.1016/j.ijhydene.2017.09.147.Suche in Google Scholar

16. Nady, H., Negem, M. Int. J. Hydrogen Energy 2018, 43, 4942; https://doi.org/10.1016/j.ijhydene.2018.01.119.Suche in Google Scholar

17. Negem, M., Nady, H., Dunnill, C. W. J. Bio- Tribo-Corrosion 2020, 6, 1–14; https://doi.org/10.1007/s40735-020-00413-3.Suche in Google Scholar

18. Negem, M., Helal, N., Roy, S., Elfeky, H., Kardas, G. J. Bio- Tribo-Corrosion 2020, 6, 49. https://doi.org/10.1007/s40735-020-00346-x.Suche in Google Scholar

19. El-Rabiei, M. M., Bahrawy, A., El-Feky, H. E., Nady, H., Arfa, M., Negem, M. J. Bio- Tribo-Corrosion 2020, 6, 52; https://doi.org/10.1007/s40735-020-00350-1.Suche in Google Scholar

20. Nady, H., Negem, M. RSC Adv. 2016, 6, 51111–51119; https://doi.org/10.1039/c6ra08348j.Suche in Google Scholar

21. Badawy, W. A., Nady, H., Negem, M. Int. J. Hydrogen Energy 2014, 39, 10824–10832; https://doi.org/10.1016/j.ijhydene.2014.05.049.Suche in Google Scholar

22. Nady, H., Negem, M. Z. Phys. Chem. 2017, 231, 1159–1178; https://doi.org/10.1515/zpch-2016-0893.Suche in Google Scholar

23. El-Feky, H., Negem, M., Roy, S., Helal, N., Baraka, A. Sci. China Chem. 2013, 56, 1446.10.1007/s11426-013-4935-4Suche in Google Scholar

24. Ranjith, B., Paruthimal Kalaignan, G. Appl. Surf. Sci. 2010, 257, 42–47; https://doi.org/10.1016/j.apsusc.2010.06.029.Suche in Google Scholar

25. Alizadeh, M., Mirak, M., Salahinejad, E., Ghaffari, M., Amini, R., Roosta, A. J. Alloys Compd. 2014, 611, 161–166; https://doi.org/10.1016/j.jallcom.2014.04.181.Suche in Google Scholar

26. Bakhit, B. Surf. Coating. Technol. 2015, 275, 324–331; https://doi.org/10.1016/j.surfcoat.2015.04.046.Suche in Google Scholar

27. Calderón, J. A., Henao, J. E., Gómez, M. A. Electrochim. Acta 2014, 124, 190–198; https://doi.org/10.1016/j.electacta.2013.08.185.Suche in Google Scholar

28. Yang, Y., Cheng, Y. F. Electrochim. Acta 2013, 109, 638–644; https://doi.org/10.1016/j.electacta.2013.07.106.Suche in Google Scholar

29. Dai, P. Q., Zhong, Y. H., Zhou, X. Surf. Eng. 2014, 27, 71–76.10.1179/174329409X433867Suche in Google Scholar

30. Dheeraj, P. R., Patra, A., Sengupta, S., Das, S., Das, K. J. Alloys Compd. 2017, 729, 1093–1107; https://doi.org/10.1016/j.jallcom.2017.09.035.Suche in Google Scholar

31. Yang, Y., Cheng, Y. F. Surf. Coating. Technol. 2013, 216, 282–288; https://doi.org/10.1016/j.surfcoat.2012.11.059.Suche in Google Scholar

32. Das, S., Banthia, S., Patra, A., Sengupta, S., Singh, S. B. J. Alloys Compd. 2018, 738, 394–404; https://doi.org/10.1016/j.jallcom.2017.12.093.Suche in Google Scholar

33. Ünal, E., Karahan, İ. H. J. Alloys Compd. 2018, 763, 329–341; https://doi.org/10.1016/j.jallcom.2018.05.312.Suche in Google Scholar

34. Ataie, S. A., Zakeri, A. J. Alloys Compd. 2016, 674, 315–322; https://doi.org/10.1016/j.jallcom.2016.02.111.Suche in Google Scholar

35. Tudela, I., Zhang, Y., Pal, M., Kerr, I., Cobley, A. J. Surf. Coating. Technol. 2015, 276, 89–105; https://doi.org/10.1016/j.surfcoat.2015.06.030.Suche in Google Scholar

36. Bakhit, B., Akbari, A., Nasirpouri, F., Hosseini, M. G. Appl. Surf. Sci. 2014, 307, 351–359; https://doi.org/10.1016/j.apsusc.2014.04.037.Suche in Google Scholar

37. Bakhit, B., Akbari, A. J. Alloys Compd. 2013, 560, 92–104; https://doi.org/10.1016/j.jallcom.2013.01.122.Suche in Google Scholar

38. Wang, C., Zhong, Y., Ren, W., Lei, Z., Ren, Z., Jia, J., Jiang, A. Appl. Surf. Sci. 2008, 254, 5649–5654; https://doi.org/10.1016/j.apsusc.2008.03.072.Suche in Google Scholar

39. Wang, C., Zhong, Y. B., Wang, J., Wang, Z. Q., Ren, W. L., Lei, Z. S., Ren, Z. M. J. Electroanal. Chem. 2009, 630, 42–48; https://doi.org/10.1016/j.jelechem.2009.02.018.Suche in Google Scholar

40. Aaboubi, O., Msellak, K. Appl. Surf. Sci. 2016, 396, 375–383.10.1016/j.apsusc.2016.10.164Suche in Google Scholar

41. Zhong, Y., Zhou, P., Zhou, J., Wang, H., Fan, L., Dong, L., Zheng, T., Shen, W. Appl. Surf. Sci. 2014, 309, 278–284; https://doi.org/10.1016/j.apsusc.2014.05.030.Suche in Google Scholar

42. Sova, V., Bollhalder, H. Plat. Surf. Finish. 1988, 75, 53.Suche in Google Scholar

43. Zahavi, J., Hazan, J. Plat. Surf. Finish. 1983, 70, 57–61.Suche in Google Scholar

44. Tulsi, S. S. Trans. Inst. Met. Finish. 1983, 61, 147; https://doi.org/10.1080/00202967.1983.11870654.Suche in Google Scholar

45. Ebdon, P. R. Plat. Surf. Finish. 1988, 75, 65.Suche in Google Scholar

46. Oberle, R. R., Scanlon, M. R., Cammarata, R. C., Searson, P. C. Appl. Phys. Lett. 1995, 66, 19; https://doi.org/10.1063/1.114167.Suche in Google Scholar

47. Shao, I., Vereecken, P. M., Cammarata, R. C., Searson, P. C. J. Electrochem. Soc. 2002, 149, C610; https://doi.org/10.1149/1.1514672.Suche in Google Scholar

48. Chan, K. C., Wang, C. L., Zhang, K. F., Pang, G. Scripta Mater. 2004, 51, 605; https://doi.org/10.1016/j.scriptamat.2004.05.026.Suche in Google Scholar

49. Wang, W., Hou, F. Y., Wang, H., Guo, H. T. Scripta Mater. 2005, 53, 613; https://doi.org/10.1016/j.scriptamat.2005.04.002.Suche in Google Scholar

50. Xu, B. S., Wang, H. D., Dong, S. Y., Jiang, B., Tu, W. Y. Electrochem. Commun. 2005, 7, 572; https://doi.org/10.1016/j.elecom.2005.03.014.Suche in Google Scholar

51. Shi, L., Sun, C. F., Gao, P., Zhou, F., Liu, W. M. Surf. Coating. Technol. 2006, 200, 4870–4875; https://doi.org/10.1016/j.surfcoat.2005.04.037.Suche in Google Scholar

52. Oh, S. T., Sando, M., Niihara, K. J. Mater. Sci. 2001, 36, 1817–1821; https://doi.org/10.1023/a:1017541112681.10.1023/A:1017541112681Suche in Google Scholar

53. Srivastava, M., William Grips, V. K., Jain, A., Rajam, K. S. Surf. Coating. Technol. 2007, 202, 310–318; https://doi.org/10.1016/j.surfcoat.2007.05.078.Suche in Google Scholar

54. Bahadormanesh, B., Dolati, A. J. Alloys Compd. 2010, 504, 514–518; https://doi.org/10.1016/j.jallcom.2010.05.154.Suche in Google Scholar

55. Srivastava, M., William Grips, V. K., Rajam, K. S. Appl. Surf. Sci. 2010, 257, 717–722; https://doi.org/10.1016/j.apsusc.2010.07.046.Suche in Google Scholar

56. Srivastava, M., William Grips, V. K., Rajam, K. S. J. Appl. Electrochem. 2008, 38, 669–677; https://doi.org/10.1007/s10800-008-9486-6.Suche in Google Scholar

57. Srivastava, M., William Grips, V. K., Rajam, K. S. J. Alloys Compd. 2009, 469, 362–365; https://doi.org/10.1016/j.jallcom.2008.01.120.Suche in Google Scholar

58. Scherrer, P. Göttinger Nachr. Ges. 1918, 2, 98.Suche in Google Scholar

59. Wielage, B., Lampke, T., Zacher, M., Dietrich, D. Key Eng. Mater. 2008, 384, 283; https://doi.org/10.4028/www.scientific.net/kem.384.283.Suche in Google Scholar

60. Cai, C., Zhu, X. B., Zheng, G. Q., Yuan, Y. N., Huang, X. Q., Cao, F. H., Yang, J. F., Zhang, Z. Surf. Coating. Technol. 2011, 205, 3448; https://doi.org/10.1016/j.surfcoat.2010.12.002.Suche in Google Scholar

61. Kuo, S., Chen, Y., Ger, M., Hwu, W. Mater. Chem. Phys. 2004, 86, 5; https://doi.org/10.1016/j.matchemphys.2003.11.040.Suche in Google Scholar

62. Okuyama, H., Iwata, N., Yamamoto, H. Phys. E: Low-dimens. Syst. Nanostruct. 2007, 37, 49; https://doi.org/10.1016/j.physe.2006.10.016.Suche in Google Scholar

63. Ali, J. A., Ambrose, J. R. Corrosion Sci. 1991, 32, 799; https://doi.org/10.1016/0010-938x(91)90025-k.Suche in Google Scholar

64. Sato, N., Okamoto, G. In Comprehensive Treatise of Electrochemistry; Bockris, J. O. M., Conway, B. E., Yeager, E., White, R. E., Eds. Plenum Press: New York, NY, Vol. 4, 1981; p. 201.Suche in Google Scholar

65. McIntyre, N. S., Rummery, T. E., Cook, M. G., Owen, D. J. Electrochem. Soc. 1976, 123, 1164; https://doi.org/10.1149/1.2133027.Suche in Google Scholar

66. Hummel, R. E., Smith, R. J., Verinkjr, E. D. Corrosion Sci. 1987, 27, 803; https://doi.org/10.1016/0010-938x(87)90038-2.Suche in Google Scholar

67. Correia, A. N., Machado, S. A. S. J. Appl. Electrochem. 2003, 33, 367; https://doi.org/10.1023/a:1024457930014.10.1023/A:1024457930014Suche in Google Scholar

68. Al‑Murshedi, A., Al‑Yasari, A., Alesary, H., Ismail, H. Chem. Papers 2020, 74, 699–709.10.1007/s11696-019-01025-zSuche in Google Scholar

69. Abd El Rehim, S. S., El Basosi, A. A., El Zein, S. M., Osman, M. M. Collect. Czech Chem. Commun. 1994, 59, 2383–2389; https://doi.org/10.1135/cccc19942383.Suche in Google Scholar

70. Seghiouer, A., Chevalet, J., Barhoun, A., Lantelme, F. J. Electroanal. Chem. 1998, 442, 113; https://doi.org/10.1016/s0022-0728(97)00498-1.Suche in Google Scholar

71. Huang, Y. J., Guo, Y. Z., Fan, H. B., Shen, J. Mater. Lett. 2012, 89, 229–232; https://doi.org/10.1016/j.matlet.2012.08.114.Suche in Google Scholar

72. Sadegha, A., Khosroshahi, R., Sadeghian, Z. J. Surf. Invest.: X-ray Synchrotron Neutron Tech. 2011, 5, 186–192.10.1134/S1027451011020030Suche in Google Scholar

73. Jiang, W., Shen, L., Qiu, M., Wang, X., Fan, M., Tian, Z. J. Alloys Compd. 2018, 762, 115–124; https://doi.org/10.1016/j.jallcom.2018.05.097.Suche in Google Scholar

74. Bahadormanesh, B., Dolati, A., Ahmadi, M. R. J. Alloys Compd. 2011, 509, 9406–9412; https://doi.org/10.1016/j.jallcom.2011.07.054.Suche in Google Scholar

75. Wang, L., Zhang, J., Gao, Y., Xue, Q., Hua, L., Xu, T. Scripta Mater. 2006, 55, 657–660; https://doi.org/10.1016/j.scriptamat.2006.04.009.Suche in Google Scholar

76. Kang, J., Yang, Y., Shao, H. Corrosion Sci. 2009, 51, 1907–1913; https://doi.org/10.1016/j.corsci.2009.04.032.Suche in Google Scholar

77. Komath, M. Mater. Chem. Phys. 1996, 45, 171–175; https://doi.org/10.1016/0254-0584(96)80098-8.Suche in Google Scholar

78. Chen, X. H., Chen, C. S., Xiao, H. N., Cheng, F. Q., Zhang, G., Yi, G. J. Surf. Coating. Technol. 2005, 191, 351; https://doi.org/10.1016/j.surfcoat.2004.04.055.Suche in Google Scholar

79. Negem, M., Nady, H. J. Mater. Eng. Perform. 2020, 29, 6940–6951; https://doi.org/10.1007/s11665-020-05180-3.Suche in Google Scholar

80. Bahrawy, A., El Rabiei, M., Elsayed, N., Arafa, M., Negem, M. Anti-corrosion Meth. Mater. 2021, 68, 167–181.10.1108/ACMM-07-2020-2339Suche in Google Scholar

Received: 2020-08-10
Accepted: 2021-10-22
Published Online: 2021-05-27
Published in Print: 2022-03-28

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2020-1733/html
Button zum nach oben scrollen