Home Physical Sciences Molecular interaction investigation of some alkaline earth metal salts in aqueous citric acid at various temperatures by physiochemical studies
Article
Licensed
Unlicensed Requires Authentication

Molecular interaction investigation of some alkaline earth metal salts in aqueous citric acid at various temperatures by physiochemical studies

  • Manish Kumar ORCID logo EMAIL logo , Shashi Kant and Deepika Kaushal
Published/Copyright: September 30, 2021

Abstract

Densities, ultrasonic velocity, conductance and viscosity of some alkaline earth metal chlorides such as magnesium chloride (MgCl2) and calcium chloride (CaCl2) were calculated in the concentration range (0.01–0.12 mol kg−1) in 0.01 mol kg−1 aqueous solution of citric acid (CA + H2O) at four varying temperatures T 1 = 303.15 K, T 2 = 308.15 K, T 3 = 313.15 K and T 4 = 318.15 K. The parameters like apparent molar volume (ϕ v ), limiting apparent molar volume ( ϕ v o ) and transfer volume (Δtr ϕ v o ) were calculated from density data. Viscosity data have been employed to calculate Falkenhagen coefficient (A), Jone–Dole’s coefficient (B), relative viscosity (η r ), and relaxation time (τ) whereas limiting molar conductance ( Λ m o ) has been evaluated from conductance studies. Using these parameters, various type of interactions occurred in the molecules have been discussed. Values of Hepler’s constant (d 2 ϕ v o /dT 2) p , (dB/dT) and d( Λ m o η o )/dT suggests that both MgCl2 and CaCl2 behave as structure breaker in (CA + H2O) system. The positive value of transfer volume exclusively tells about solute–solvent interactions which further indicate that both metal chlorides distort the structure of water and act as structure breaker. These studies are helpful in understanding the nature of interactions occurs in biological systems as CA and metal salts are essential for normal functioning of body.


Corresponding author: Manish Kumar, Department of Chemistry & Chemical Sciences, Central University of Himachal Pradesh, Shahpur, Kangra, HP-176206, India; and Department of Chemistry, Himachal Pradesh University, Shimla-171005, India, E-mail:

Funding source: CSIR

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: M.K is thankful to the funding agency (CSIR, New Delhi) for financial assistance.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Samsonowicz, M., Regulska, E., Swisłocka, R., Lewandowski, W. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 103, 456; https://doi.org/10.1016/j.saa.2012.11.073.Search in Google Scholar

2. Srinivasan, B. R., Sawant, S. C. Thermochim. Acta 2003, 402, 45; https://doi.org/10.1016/s0040-6031(02)00533-6.Search in Google Scholar

3. Crea, F., D’Ascenzo, G., De Robertis, A., Materazzi, S., Samartano, S. Talanta 2003, 61, 611; https://doi.org/10.1016/s0039-9140(03)00331-x.Search in Google Scholar

4. Martin, R. B. J. Inorg. Biochem. 1989, 28, 181; https://doi.org/10.1021/ic00318a700.Search in Google Scholar

5. Lippard, S. J. Principles of Bioinorganic Chemistry; University Science Books: Mill Valley, CA, 1994; p. 352.Search in Google Scholar

6. Bates, R. G., Pinching, G. P. J. Am. Chem. Soc. 1949, 71, 1274; https://doi.org/10.1021/ja01172a039.Search in Google Scholar

7. Kumar, D., Sharma, S. K. Z. Phys. Chem. 2018, 232, 393; https://doi.org/10.1515/zpch-2017-0977.Search in Google Scholar

8. Wyrzykowski, D., Czupryniak, J., Ossowski, T., Chmurzynski, L. J. Therm. Anal. Calorim. 2010, 102, 149; https://doi.org/10.1007/s10973-010-0970-y.Search in Google Scholar

9. Zhou, Z. H., Deng, Y. F., Wan, H. L. Cryst. Growth Des. 2005, 5, 1109; https://doi.org/10.1021/cg0496282.Search in Google Scholar

10. Predoana, L., Malic, B., Zaharescu, M. J. Therm. Anal. Calorim. 2009, 98, 361; https://doi.org/10.1007/s10973-009-0315-x.Search in Google Scholar

11. Deng, Y. F., Zhou, Z. H., Cao, Z. X., Tsai, K. R. J. Inorg. Biochem. 2004, 98, 1110; https://doi.org/10.1016/j.jinorgbio.2004.03.009.Search in Google Scholar

12. Roy, M. N., Chanda, R., Das, R. K., Ekka, D. J. Chem. Eng. Data 2011, 56, 3285; https://doi.org/10.1021/je2000217.Search in Google Scholar

13. Roy, M. N., Bhattacharjee, A., Chakraborti, P. Thermochim. Acta 2010, 507–508, 135; https://doi.org/10.1016/j.tca.2010.05.014.Search in Google Scholar

14. Kant, S., Kumar, M. J. Chem. Biol. Phys. Sci. 2013, 3, 2459.Search in Google Scholar

15. Levien, B. J. J. Phys. Chem. 1955, 59, 640; https://doi.org/10.1021/j150529a016.Search in Google Scholar

16. Lomesh, S. K., Kumar, D. J. Mol. Liq. 2017, 241, 764; https://doi.org/10.1016/j.molliq.2017.05.004.Search in Google Scholar

17. Apelblat, A. J. Chem. Thermodyn. 1986, 18, 351; https://doi.org/10.1016/0021-9614(86)90080-7.Search in Google Scholar

18. Isono, T. J. Chem. Eng. Data 1984, 29, 45; https://doi.org/10.1021/je00035a016.Search in Google Scholar

19. Kaushal, D., Rana, D. S., Kumar, M., Singh, K., Singh, K., Chauhan, S., Umar, A. Z. Phys. Chem. 2019, 233, 413; https://doi.org/10.1515/zpch-2017-1014.Search in Google Scholar

20. Kumar, M., Kant, S., Kaushal, D. Z. Phys. Chem. 2018, 233, 255; https://doi.org/10.1515/zpch-2018-1151.Search in Google Scholar

21. Aqvist, J. J. Phys. Chem. 1990, 94, 8021; https://doi.org/10.1021/j100371a900.Search in Google Scholar

22. Roux, B. Chem. Phys. Lett. 1993, 212, 231; https://doi.org/10.1016/0009-2614(93)89319-d.Search in Google Scholar

23. Saxena, A., García, A. E. J. Phys. Chem. B 2015, 119, 219; https://doi.org/10.1021/jp507008x.Search in Google Scholar PubMed PubMed Central

24. Friesen, S., Hefter, G., Buchner, R. J. Phys. Chem. B 2019, 123, 891; https://doi.org/10.1021/acs.jpcb.8b11131.Search in Google Scholar PubMed

25. Agudo, E. R., Cara, A. B., Agudo, C. R., Velasco1, A. I., Cölfen, H., Navarro, C. R. Nat. Commun. 2017, 8, 1; https://doi.org/10.1038/s41467-017-00756-5.Search in Google Scholar PubMed PubMed Central

26. Laube, N., Jansen, B., Hesse, A. Urol. Res. 2002, 30, 336; https://doi.org/10.1007/s00240-002-0272-3.Search in Google Scholar PubMed

27. Ponrouch, A., Rosa, M. P. Curr. Opin. Electrochem. 2018, 9, 1–7; https://doi.org/10.1016/j.coelec.2018.02.001.Search in Google Scholar

28. Ponrouch, A., Frontera1, C., Bardé, F., Palacín, M. R. Nat. Mater. 2016, 15, 169; https://doi.org/10.1038/nmat4462.Search in Google Scholar PubMed

29. Atul, M. K., Sharma, A., Maurya, I. K., Thakur, A., Kumar, S. J. Taibah Univ. Sci. 2019, 13, 280.10.1080/16583655.2019.1565437Search in Google Scholar

30. Soni, A., Kumar, S., Kaushal, D., Sharotri, N., Maurya, I. K., Sharma, J., Sharma, A., Kumar, M. Adv. Sci. Eng. Med. 2019, 11, 465; https://doi.org/10.1166/asem.2019.2379.Search in Google Scholar

31. Kaushal, D., Rana, D. S., Chauhan, M. S., Chauhan, S. Z. Phys. Chem. 2014, 228, 99; https://doi.org/10.1515/zpch-2014-0436.Search in Google Scholar

32. Masson, D. O. Philos. Mag. A 1929, 8, 218; https://doi.org/10.1080/14786440808564880.Search in Google Scholar

33. Lomesh, S. K., Bala, M., Kumar, D., Kumar, I. J. Mol. Liq. 2019, 289, 109479; https://doi.org/10.1016/j.molliq.2018.08.034.Search in Google Scholar

34. Kant, S., Kumar, A., Kumar, S. J. Mol. Liq. 2009, 150, 39; https://doi.org/10.1016/j.molliq.2009.09.010.Search in Google Scholar

35. Millero, F. J. Structure. In Thermodynamics and Transport Processes in Water and Aqueous Solutions, Chap. 15; Horne, R. A., Ed. Wiley-Interscience: New York, 1971.Search in Google Scholar

36. Malladi, L., Tangde, V. M., Dhondge, S. S., Deshmukh, D. W., Jengathe, S. P. J. Chem. Thermodyn. 2017, 112, 166; https://doi.org/10.1016/j.jct.2017.04.015.Search in Google Scholar

37. Kumar, H., Kaur, K. J. Mol. Liq. 2012, 173, 130; https://doi.org/10.1016/j.molliq.2012.07.008.Search in Google Scholar

38. Hepler, L. G. Can. J. Chem. 1969, 47, 4613; https://doi.org/10.1139/v69-762.Search in Google Scholar

39. Ali, A., Bhushan, V., Bidhuri, P. J. Mol. Liq. 2013, 177, 209; https://doi.org/10.1016/j.molliq.2012.10.004.Search in Google Scholar

40. Gaba, R., Kaur, N., Pal, A., Sharma, D., Kumar, H. J. Mol. Liq. 2020, 305, 112855; https://doi.org/10.1016/j.molliq.2020.112855.Search in Google Scholar

41. Friedman, H. L., Krishnan, C. V., Water, A. In Comprehensive Treatise; Franks, F., Ed. Plenum Press: New York, Vol. 3, 1973. (Chapter 1).Search in Google Scholar

42. Banipal, T. S., Kaur, J., Banipal, P. K., Sood, A. K., Singh, K. J. Chem. Eng. Data 2011, 56, 2751; https://doi.org/10.1021/je100909b.Search in Google Scholar

43. Chauhan, S., Chauhan, M. S., Jyoti, J., Rajni. J. Mol. Liq. 2009, 148, 24; https://doi.org/10.1016/j.molliq.2009.05.002.Search in Google Scholar

44. Kaushal, D., Rana, D. S., Syal, V. K., Chauhan, S., Umar, A. J. Mol. Liq. 2015, 211, 761; https://doi.org/10.1016/j.molliq.2015.08.002.Search in Google Scholar

45. Dhondge, S. S., Zodape, S. P., Parwate, D. V. J. Chem. Thermodyn. 2012, 48, 207; https://doi.org/10.1016/j.jct.2011.12.022.Search in Google Scholar

46. Kaur, K., Kumar, H. J. Mol. Liq. 2012, 177, 49.10.1016/j.molliq.2012.09.016Search in Google Scholar

47. Sharma, K., Chauhan, S. Thermochim. Acta 2014, 578, 15; https://doi.org/10.1016/j.tca.2013.12.021.Search in Google Scholar

48. Jones, G., Dole, M. J. Am. Chem. Soc. 1929, 51, 2950; https://doi.org/10.1021/ja01385a012.Search in Google Scholar

49. Banipal, T. S., Singh, H., Banipal, P. K., Singh, V. Thermochim. Acta 2013, 553, 31; https://doi.org/10.1016/j.tca.2012.10.017.Search in Google Scholar

50. Roy, M. N., Dakua, V. K., Sinha, B. Int. J. Thermophys. 2007, 28, 1275; https://doi.org/10.1007/s10765-007-0220-0.Search in Google Scholar

51. Glasstone, S., Laidler, K. J., Eyring, H. The Theory of Rate Processes; McGraw-Hill: New York, 1941.Search in Google Scholar

52. Ali, A., Khan, S., Hyder, S., Tariq, Md. J. Chem. Thermodyn. 2007, 39, 613; https://doi.org/10.1016/j.jct.2006.08.010.Search in Google Scholar

53. Singh, M., Pandey, M. Phys. Chem. Liq. 2008, 46, 119; https://doi.org/10.1080/00319100600682599.Search in Google Scholar

54. Maclness, D. A. The Principles of Electrochemistry; Dova Publications, Inc.: New York, 1967.Search in Google Scholar

55. Inada, E. Rev. Phys. Chem. Jpn. 1976, 46, 19.10.1016/0030-4018(76)90117-6Search in Google Scholar

56. Apelblat, A. J. Phys. Chem. B 2008, 112, 7032; https://doi.org/10.1021/jp802113v.Search in Google Scholar PubMed

Received: 2020-10-14
Accepted: 2021-09-09
Published Online: 2021-09-30
Published in Print: 2022-03-28

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2020-1766/html
Scroll to top button