Abstract
Densities, ultrasonic velocity, conductance and viscosity of some alkaline earth metal chlorides such as magnesium chloride (MgCl2) and calcium chloride (CaCl2) were calculated in the concentration range (0.01–0.12 mol kg−1) in 0.01 mol kg−1 aqueous solution of citric acid (CA + H2O) at four varying temperatures T
1 = 303.15 K, T
2 = 308.15 K, T
3 = 313.15 K and T
4 = 318.15 K. The parameters like apparent molar volume (ϕ
v
), limiting apparent molar volume (
Funding source: CSIR
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: M.K is thankful to the funding agency (CSIR, New Delhi) for financial assistance.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Samsonowicz, M., Regulska, E., Swisłocka, R., Lewandowski, W. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 103, 456; https://doi.org/10.1016/j.saa.2012.11.073.Search in Google Scholar
2. Srinivasan, B. R., Sawant, S. C. Thermochim. Acta 2003, 402, 45; https://doi.org/10.1016/s0040-6031(02)00533-6.Search in Google Scholar
3. Crea, F., D’Ascenzo, G., De Robertis, A., Materazzi, S., Samartano, S. Talanta 2003, 61, 611; https://doi.org/10.1016/s0039-9140(03)00331-x.Search in Google Scholar
4. Martin, R. B. J. Inorg. Biochem. 1989, 28, 181; https://doi.org/10.1021/ic00318a700.Search in Google Scholar
5. Lippard, S. J. Principles of Bioinorganic Chemistry; University Science Books: Mill Valley, CA, 1994; p. 352.Search in Google Scholar
6. Bates, R. G., Pinching, G. P. J. Am. Chem. Soc. 1949, 71, 1274; https://doi.org/10.1021/ja01172a039.Search in Google Scholar
7. Kumar, D., Sharma, S. K. Z. Phys. Chem. 2018, 232, 393; https://doi.org/10.1515/zpch-2017-0977.Search in Google Scholar
8. Wyrzykowski, D., Czupryniak, J., Ossowski, T., Chmurzynski, L. J. Therm. Anal. Calorim. 2010, 102, 149; https://doi.org/10.1007/s10973-010-0970-y.Search in Google Scholar
9. Zhou, Z. H., Deng, Y. F., Wan, H. L. Cryst. Growth Des. 2005, 5, 1109; https://doi.org/10.1021/cg0496282.Search in Google Scholar
10. Predoana, L., Malic, B., Zaharescu, M. J. Therm. Anal. Calorim. 2009, 98, 361; https://doi.org/10.1007/s10973-009-0315-x.Search in Google Scholar
11. Deng, Y. F., Zhou, Z. H., Cao, Z. X., Tsai, K. R. J. Inorg. Biochem. 2004, 98, 1110; https://doi.org/10.1016/j.jinorgbio.2004.03.009.Search in Google Scholar
12. Roy, M. N., Chanda, R., Das, R. K., Ekka, D. J. Chem. Eng. Data 2011, 56, 3285; https://doi.org/10.1021/je2000217.Search in Google Scholar
13. Roy, M. N., Bhattacharjee, A., Chakraborti, P. Thermochim. Acta 2010, 507–508, 135; https://doi.org/10.1016/j.tca.2010.05.014.Search in Google Scholar
14. Kant, S., Kumar, M. J. Chem. Biol. Phys. Sci. 2013, 3, 2459.Search in Google Scholar
15. Levien, B. J. J. Phys. Chem. 1955, 59, 640; https://doi.org/10.1021/j150529a016.Search in Google Scholar
16. Lomesh, S. K., Kumar, D. J. Mol. Liq. 2017, 241, 764; https://doi.org/10.1016/j.molliq.2017.05.004.Search in Google Scholar
17. Apelblat, A. J. Chem. Thermodyn. 1986, 18, 351; https://doi.org/10.1016/0021-9614(86)90080-7.Search in Google Scholar
18. Isono, T. J. Chem. Eng. Data 1984, 29, 45; https://doi.org/10.1021/je00035a016.Search in Google Scholar
19. Kaushal, D., Rana, D. S., Kumar, M., Singh, K., Singh, K., Chauhan, S., Umar, A. Z. Phys. Chem. 2019, 233, 413; https://doi.org/10.1515/zpch-2017-1014.Search in Google Scholar
20. Kumar, M., Kant, S., Kaushal, D. Z. Phys. Chem. 2018, 233, 255; https://doi.org/10.1515/zpch-2018-1151.Search in Google Scholar
21. Aqvist, J. J. Phys. Chem. 1990, 94, 8021; https://doi.org/10.1021/j100371a900.Search in Google Scholar
22. Roux, B. Chem. Phys. Lett. 1993, 212, 231; https://doi.org/10.1016/0009-2614(93)89319-d.Search in Google Scholar
23. Saxena, A., García, A. E. J. Phys. Chem. B 2015, 119, 219; https://doi.org/10.1021/jp507008x.Search in Google Scholar PubMed PubMed Central
24. Friesen, S., Hefter, G., Buchner, R. J. Phys. Chem. B 2019, 123, 891; https://doi.org/10.1021/acs.jpcb.8b11131.Search in Google Scholar PubMed
25. Agudo, E. R., Cara, A. B., Agudo, C. R., Velasco1, A. I., Cölfen, H., Navarro, C. R. Nat. Commun. 2017, 8, 1; https://doi.org/10.1038/s41467-017-00756-5.Search in Google Scholar PubMed PubMed Central
26. Laube, N., Jansen, B., Hesse, A. Urol. Res. 2002, 30, 336; https://doi.org/10.1007/s00240-002-0272-3.Search in Google Scholar PubMed
27. Ponrouch, A., Rosa, M. P. Curr. Opin. Electrochem. 2018, 9, 1–7; https://doi.org/10.1016/j.coelec.2018.02.001.Search in Google Scholar
28. Ponrouch, A., Frontera1, C., Bardé, F., Palacín, M. R. Nat. Mater. 2016, 15, 169; https://doi.org/10.1038/nmat4462.Search in Google Scholar PubMed
29. Atul, M. K., Sharma, A., Maurya, I. K., Thakur, A., Kumar, S. J. Taibah Univ. Sci. 2019, 13, 280.10.1080/16583655.2019.1565437Search in Google Scholar
30. Soni, A., Kumar, S., Kaushal, D., Sharotri, N., Maurya, I. K., Sharma, J., Sharma, A., Kumar, M. Adv. Sci. Eng. Med. 2019, 11, 465; https://doi.org/10.1166/asem.2019.2379.Search in Google Scholar
31. Kaushal, D., Rana, D. S., Chauhan, M. S., Chauhan, S. Z. Phys. Chem. 2014, 228, 99; https://doi.org/10.1515/zpch-2014-0436.Search in Google Scholar
32. Masson, D. O. Philos. Mag. A 1929, 8, 218; https://doi.org/10.1080/14786440808564880.Search in Google Scholar
33. Lomesh, S. K., Bala, M., Kumar, D., Kumar, I. J. Mol. Liq. 2019, 289, 109479; https://doi.org/10.1016/j.molliq.2018.08.034.Search in Google Scholar
34. Kant, S., Kumar, A., Kumar, S. J. Mol. Liq. 2009, 150, 39; https://doi.org/10.1016/j.molliq.2009.09.010.Search in Google Scholar
35. Millero, F. J. Structure. In Thermodynamics and Transport Processes in Water and Aqueous Solutions, Chap. 15; Horne, R. A., Ed. Wiley-Interscience: New York, 1971.Search in Google Scholar
36. Malladi, L., Tangde, V. M., Dhondge, S. S., Deshmukh, D. W., Jengathe, S. P. J. Chem. Thermodyn. 2017, 112, 166; https://doi.org/10.1016/j.jct.2017.04.015.Search in Google Scholar
37. Kumar, H., Kaur, K. J. Mol. Liq. 2012, 173, 130; https://doi.org/10.1016/j.molliq.2012.07.008.Search in Google Scholar
38. Hepler, L. G. Can. J. Chem. 1969, 47, 4613; https://doi.org/10.1139/v69-762.Search in Google Scholar
39. Ali, A., Bhushan, V., Bidhuri, P. J. Mol. Liq. 2013, 177, 209; https://doi.org/10.1016/j.molliq.2012.10.004.Search in Google Scholar
40. Gaba, R., Kaur, N., Pal, A., Sharma, D., Kumar, H. J. Mol. Liq. 2020, 305, 112855; https://doi.org/10.1016/j.molliq.2020.112855.Search in Google Scholar
41. Friedman, H. L., Krishnan, C. V., Water, A. In Comprehensive Treatise; Franks, F., Ed. Plenum Press: New York, Vol. 3, 1973. (Chapter 1).Search in Google Scholar
42. Banipal, T. S., Kaur, J., Banipal, P. K., Sood, A. K., Singh, K. J. Chem. Eng. Data 2011, 56, 2751; https://doi.org/10.1021/je100909b.Search in Google Scholar
43. Chauhan, S., Chauhan, M. S., Jyoti, J., Rajni. J. Mol. Liq. 2009, 148, 24; https://doi.org/10.1016/j.molliq.2009.05.002.Search in Google Scholar
44. Kaushal, D., Rana, D. S., Syal, V. K., Chauhan, S., Umar, A. J. Mol. Liq. 2015, 211, 761; https://doi.org/10.1016/j.molliq.2015.08.002.Search in Google Scholar
45. Dhondge, S. S., Zodape, S. P., Parwate, D. V. J. Chem. Thermodyn. 2012, 48, 207; https://doi.org/10.1016/j.jct.2011.12.022.Search in Google Scholar
46. Kaur, K., Kumar, H. J. Mol. Liq. 2012, 177, 49.10.1016/j.molliq.2012.09.016Search in Google Scholar
47. Sharma, K., Chauhan, S. Thermochim. Acta 2014, 578, 15; https://doi.org/10.1016/j.tca.2013.12.021.Search in Google Scholar
48. Jones, G., Dole, M. J. Am. Chem. Soc. 1929, 51, 2950; https://doi.org/10.1021/ja01385a012.Search in Google Scholar
49. Banipal, T. S., Singh, H., Banipal, P. K., Singh, V. Thermochim. Acta 2013, 553, 31; https://doi.org/10.1016/j.tca.2012.10.017.Search in Google Scholar
50. Roy, M. N., Dakua, V. K., Sinha, B. Int. J. Thermophys. 2007, 28, 1275; https://doi.org/10.1007/s10765-007-0220-0.Search in Google Scholar
51. Glasstone, S., Laidler, K. J., Eyring, H. The Theory of Rate Processes; McGraw-Hill: New York, 1941.Search in Google Scholar
52. Ali, A., Khan, S., Hyder, S., Tariq, Md. J. Chem. Thermodyn. 2007, 39, 613; https://doi.org/10.1016/j.jct.2006.08.010.Search in Google Scholar
53. Singh, M., Pandey, M. Phys. Chem. Liq. 2008, 46, 119; https://doi.org/10.1080/00319100600682599.Search in Google Scholar
54. Maclness, D. A. The Principles of Electrochemistry; Dova Publications, Inc.: New York, 1967.Search in Google Scholar
55. Inada, E. Rev. Phys. Chem. Jpn. 1976, 46, 19.10.1016/0030-4018(76)90117-6Search in Google Scholar
56. Apelblat, A. J. Phys. Chem. B 2008, 112, 7032; https://doi.org/10.1021/jp802113v.Search in Google Scholar PubMed
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Article
- State-of-art of silver and gold nanoparticles synthesis routes, characterization and applications: a review
- Original Papers
- Microstructural characterization and corrosion behaviour of ultrasound-assisted synthesis of Ni–xCo–yTiO2 nanocomposites in alkaline environments
- Interaction of cationic surfactant with acid yellow dye in absence/presence of organic and inorganic additives: conductivity and dye solubilization methods
- Kinetics of methylene blue dye adsorptive removal using halloysite nanocomposite hydrogels
- Molecular interaction investigation of some alkaline earth metal salts in aqueous citric acid at various temperatures by physiochemical studies
- Impacts of polyols and temperature on the micellization, interaction and thermodynamics behavior of the mixture of tetradecyltrimethylammonium bromide and polyvinyl alcohol
- The physicochemical and DNA binding studies of some medicinal compounds in solutions
Articles in the same Issue
- Frontmatter
- Review Article
- State-of-art of silver and gold nanoparticles synthesis routes, characterization and applications: a review
- Original Papers
- Microstructural characterization and corrosion behaviour of ultrasound-assisted synthesis of Ni–xCo–yTiO2 nanocomposites in alkaline environments
- Interaction of cationic surfactant with acid yellow dye in absence/presence of organic and inorganic additives: conductivity and dye solubilization methods
- Kinetics of methylene blue dye adsorptive removal using halloysite nanocomposite hydrogels
- Molecular interaction investigation of some alkaline earth metal salts in aqueous citric acid at various temperatures by physiochemical studies
- Impacts of polyols and temperature on the micellization, interaction and thermodynamics behavior of the mixture of tetradecyltrimethylammonium bromide and polyvinyl alcohol
- The physicochemical and DNA binding studies of some medicinal compounds in solutions