Home Physical Sciences State-of-art of silver and gold nanoparticles synthesis routes, characterization and applications: a review
Article
Licensed
Unlicensed Requires Authentication

State-of-art of silver and gold nanoparticles synthesis routes, characterization and applications: a review

  • Faisal Ali , Muhammad Hamza , Munawar Iqbal EMAIL logo , Beriham Basha EMAIL logo , Norah Alwadai and Arif Nazir
Published/Copyright: October 19, 2021

Abstract

To date, the noble metal-based nanoparticles have been used in every field of life. The Au and Ag nanoparticles (NPs) have been fabricated employing different techniques to tune the properties. In this study, the methodologies developed and adopted for the fabrication of Au and Ag have been discussed, which include physical, chemical and biological routes. The Au and Ag characteristics (morphology, size, shape) along with advantages and disadvantages are discussed. The Au and Ag NPs catalytic and biomedical applications are discussed. For the Ag and Au NPs characterization, SEM (scanning electron microscope), TEM (transmission electron microscope), FTIR (Fourier transform infra-red spectroscopy), XRD (X-rays diffraction) and DLS (dynamic light scattering) techniques are employed. The properties of Au and Ag NPs found dependent to synthesis approach, i.e., the size, shape and morphologies, which showed a promising Catalytic, drug delivery and antimicrobial agent applications. The review is a comprehensive study for the comparison of Au and Ag NPs synthesis, properties and applications in different fields.


Corresponding author: Munawar Iqbal, Department of Chemistry, The University of Lahore, Lahore, Pakistan, E-mail: ; and Beriham Basha, Department of Physics, College of Science, Princess Nourah bint Abdulrahman University (PNU), Riyadh 11671, Saudi Arabia, E-mail:
Corresponding authors

Funding source: Princess Nourah bint Abdulrahman University

Award Identifier / Grant number: Fast-track Research Funding

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Shaheen, M., Bhatti, I. A., Ashar, A., Mohsin, M., Nisar, J., Almoneef, M. M., Iqbal, M. Z. Phys. Chem. 2021, 235, 1395–1412. https://doi.org/10.1515/zpch-2020-1741.Search in Google Scholar

2. Majid, F., Shahin, A., Ata, S., Bibi, I., Malik, A., Ali, A., Laref, A., Iqbal, M., Nazir, A. Z. Phys. Chem. 2021, 235, 1279–1296. https://doi.org/10.1515/zpch-2020-1751.Search in Google Scholar

3. Noreen, S., Ismail, S., Ibrahim, S. M., Kusuma, H. S., Nazir, A., Yaseen, M., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2020, 235, 1055–1075; https://doi.org/10.1515/zpch-2019-1599.Search in Google Scholar

4. Majid, F., Rauf, J., Ata, S., Bibi, I., Yameen, M., Iqbal, M. Z. Phys. Chem. 2019, 233, 1411–1430; https://doi.org/10.1515/zpch-2018-1305.Search in Google Scholar

5. Majid, F., Malik, A., Ata, S., Hussain, Z., Bibi, I., Iqbal, M., Rafay, M., Rizvi, H. Z. Phys. Chem. 2019, 233, 1215–1231; https://doi.org/10.1515/zpch-2018-1339.Search in Google Scholar

6. Bibi, I., Hussain, S., Majid, F., Kamal, S., Ata, S., Sultan, M., Din, M. I., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1431–1445; https://doi.org/10.1515/zpch-2018-1162.Search in Google Scholar

7. Ata, S., Tabassum, A., Bibi, I., Majid, F., Sultan, M., Ghafoor, S., Bhatti, M. A., Qureshi, N., Iqbal, M. Z. Phys. Chem. 2019, 233, 1377–1409; https://doi.org/10.1515/zpch-2018-1205.Search in Google Scholar

8. Ata, S., Tabassum, A., Bibi, I., Ghafoor, S., Ahad, A., Bhatti, M. A., Islam, A., Rizvi, H., Iqbal, M. Z. Phys. Chem. 2019, 233, 995–1017; https://doi.org/10.1515/zpch-2018-1203.Search in Google Scholar

9. Iqbal, M., Shar, G. A., Ibrahim, S. M., Iftikhar, S., Asif, M., Khan, M. I., Kusuma, H. S., Yaseen, M., Nazir, A. Z. Phys. Chem. 2020, 235, 1209–1226. https://doi.org/10.1515/zpch-2019-1562.Search in Google Scholar

10. Nazir, A., Farooq, S., Abbas, M., Alabbad, E. A., Albalawi, H., Alwadai, N., Almuqrin, A. H., Iqbal, M. Z. Phys. Chem. 2021, 235, 1589–1607. https://doi.org/10.1515/zpch-2020-1803.Search in Google Scholar

11. Noreen, S., Ismail, S., Ibrahim, S. M., Kusuma, H. S., Nazir, A., Yaseen, M., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2020, 235, 1055–1075. https://doi.org/10.1515/zpch-2019-1599.Search in Google Scholar

12. Awwad, A. M., Salem, N. M., Aqarbeh, M. M., Abdulaziz, F. M. Chem. Int. 2020, 6, 42–48.Search in Google Scholar

13. Remya, V., Abitha, V., Rajput, P., Rane, A., Dutta, A. Chem. Int. 2017, 3, 165–171.Search in Google Scholar

14. Algarou, N., Slimani, Y., Almessiere, M., Baykal, A., Guner, S., Manikandan, A., Ercan, I. J. Magn. Magn Mater. 2020, 499, 166308; https://doi.org/10.1016/j.jmmm.2019.166308.Search in Google Scholar

15. Elayakumar, K., Dinesh, A., Manikandan, A., Palanivelu, M., Kavitha, G., Prakash, S., Kumar, R. T., Jaganathan, S. K., Baykal, A. J. Magn. Magn Mater. 2019, 476, 157–165; https://doi.org/10.1016/j.jmmm.2018.09.089.Search in Google Scholar

16. Slimani, Y., Baykal, A., Manikandan, A. J. Magn. Magn Mater. 2018, 458, 204–212; https://doi.org/10.1016/j.jmmm.2018.03.025.Search in Google Scholar

17. Bhavani, P., Manikandan, A., Paulraj, P., Dinesh, A., Durka, M., Antony, S. A. J. Nanosci. Nanotechnol. 2018, 18, 4072–4081; https://doi.org/10.1166/jnn.2018.15217.Search in Google Scholar PubMed

18. Khan, M., Mehmood, B., Mustafa, G. M., Humaiyoun, K., Alwadai, N., Almuqrin, A. H., Albalawi, H., Iqbal, M. J. C. I. Ceram. Int. 2021, 47, 15801–15806; https://doi.org/10.1016/j.ceramint.2021.02.152.Search in Google Scholar

19. Yasmin, S., Nouren, S., Bhatti, H. N., Iqbal, D. N., Iftikhar, S., Majeed, J., Mustafa, R., Nisar, N., Nisar, J., Nazir, A. Green Process. Synth. 2020, 9, 87–96; https://doi.org/10.1515/gps-2020-0010.Search in Google Scholar

20. Ata, S., Shaheen, I., Qurat ul, A., Ghafoor, S., Sultan, M., Majid, F., Bibi, I., Iqbal, M. Diam. Relat. Mater. 2018, 90, 26–31; https://doi.org/10.1016/j.diamond.2018.09.015.Search in Google Scholar

21. Ali, S., Iqbal, M., Naseer, A., Yaseen, M., Bibi, I., Nazir, A., Khan, M. I., Tamam, N., Alwadai, N., Rizwan, M., Abbas, M. Environ. Nanotechnol. Monit. Manage. 2021, 16, 100511; https://doi.org/10.1016/j.enmm.2021.100511.Search in Google Scholar

22. Naseer, A., Ali, A., Ali, S., Mahmood, A., Kusuma, H., Nazir, A., Yaseen, M., Khan, M., Ghaffar, A., Abbas, M. J. Mater. Res. Technol. 2020, 9, 9093–9107; https://doi.org/10.1016/j.jmrt.2020.06.013.Search in Google Scholar

23. Rahmat, M., Rehman, A., Rahmat, S., Bhatti, H. N., Iqbal, M., Khan, W. S., Jamil, Y., Bajwa, S. Z., Sarwar, Y., Rasul, S. J. Mol. Struct. 2019, 1191, 284–290; https://doi.org/10.1016/j.molstruc.2019.04.094.Search in Google Scholar

24. Kamran, U., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1325–1349; https://doi.org/10.1515/zpch-2018-1238.Search in Google Scholar

25. Kamran, U., Bhatti, H. N., Iqbal, M., Jamil, S., Zahid, M. J. Mol. Struct. 2019, 1179, 532–539; https://doi.org/10.1016/j.molstruc.2018.11.006.Search in Google Scholar

26. Baykal, A., Guner, S., Gungunes, H., Batoo, K., Amir, M., Manikandan, A. J. Inorg. Organomet. Polym. Mater. 2018, 28, 2533–2544; https://doi.org/10.1007/s10904-018-0903-y.Search in Google Scholar

27. Asiri, S., Sertkol, M., Güngüneş, H., Amir, M., Manikandan, A., Ercan, İ., Baykal, A. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1587–1597; https://doi.org/10.1007/s10904-018-0813-z.Search in Google Scholar

28. Asiri, S., Güner, S., Demir, A., Yildiz, A., Manikandan, A., Baykal, A. J. Inorg. Organomet. Polym. Mater. 2018, 28, 1065–1071; https://doi.org/10.1007/s10904-017-0735-1.Search in Google Scholar

29. Maruthamani, D., Vadivel, S., Kumaravel, M., Saravanakumar, B., Paul, B., Dhar, S. S., Habibi-Yangjeh, A., Manikandan, A., Ramadoss, G. J. Colloid Interface Sci. 2017, 498, 449–459; https://doi.org/10.1016/j.jcis.2017.03.086.Search in Google Scholar PubMed

30. Manikandan, A., Sridhar, R., Antony, S. A., Ramakrishna, S. J. Mol. Struct. 2014, 1076, 188–200; https://doi.org/10.1016/j.molstruc.2014.07.054.Search in Google Scholar

31. Omran, B. A. (Ed.) Current trends in algae-mediated synthesis of metal and metal oxide nanoparticles (Phyconanotechnology). In Nanobiotechnology: A Multidisciplinary Field of Science; Springer International Publishing: Cham, 2020; pp. 111–143.10.1007/978-3-030-46071-6_4Search in Google Scholar

32. Amer, M. W., Awwad, A. M. Chem. Int. 2021, 7, 1–8.Search in Google Scholar

33. Awwad, A. M., Amer, M. W., Salem, N. M., Abdeen, A. O. Chem. Int. 2020, 6, 151–159.Search in Google Scholar

34. Al Banna, L. S., Salem, N. M., Jaleel, G. A., Awwad, A. M. Chem. Int. 2020, 6, 137–143.Search in Google Scholar

35. Igwe, O. U., Nwamezie, F. Chem. Int. 2018, 4, 60–66.10.1002/nadc.20184071829Search in Google Scholar

36. Zhu, L., Gharib, M., Becker, C., Zeng, Y., Ziefuß, A. R., Chen, L., Alkilany, A. M., Rehbock, C., Barcikowski, S., Parak, W. J. J. Chem. Educ. 2019, 97, 239–243; https://doi.org/10.1021/acs.jchemed.9b00342.Search in Google Scholar

37. Pareek, V., Bhargava, A., Gupta, R., Jain, N., Panwar, J. Adv. Sci. Eng. Med. 2017, 9, 527–544; https://doi.org/10.1166/asem.2017.2027.Search in Google Scholar

38. Duan, H., Wang, D., Li, Y. Chem. Soc. Rev. 2015, 44, 5778–5792; https://doi.org/10.1039/c4cs00363b.Search in Google Scholar PubMed

39. Shamaila, S., Zafar, N., Riaz, S., Sharif, R., Nazir, J., Naseem, S. Nanomaterials 2016, 6, 71; https://doi.org/10.3390/nano6040071.Search in Google Scholar PubMed PubMed Central

40. Evanoff, D. D.Jr, Chumanov, G. ChemPhysChem 2005, 6, 1221–1231; https://doi.org/10.1002/cphc.200500113.Search in Google Scholar PubMed

41. Wan, Y., Guo, Z., Jiang, X., Fang, K., Lu, X., Zhang, Y., Gu, N. J. Colloid Interface Sci. 2013, 394, 263–268; https://doi.org/10.1016/j.jcis.2012.12.037.Search in Google Scholar PubMed

42. Steinigeweg, D., Schluecker, S. Chem. Commun. 2012, 48, 8682–8684; https://doi.org/10.1039/c2cc33850e.Search in Google Scholar PubMed

43. De Souza, C. D., Nogueira, B. R., Rostelato, M. E. C. J. Alloys Compd. 2019, 798, 714–740; https://doi.org/10.1016/j.jallcom.2019.05.153.Search in Google Scholar

44. Liu, Y., Yang, L., Shen, Y. J. Mater. Res. 2018, 33, 3537; https://doi.org/10.1557/jmr.2018.357.Search in Google Scholar

45. Liu, Y., Yang, L., Shen, Y. J. Mater. Res. 2018, 33, 2671–2679; https://doi.org/10.1557/jmr.2018.274.Search in Google Scholar

46. Yang, J., Pan, J. Acta Mater. 2012, 60, 4753–4758; https://doi.org/10.1016/j.actamat.2012.05.037.Search in Google Scholar

47. Yang, Z., Qian, H., Chen, H., Anker, J. N. J. Colloid Interface Sci. 2010, 352, 285–291; https://doi.org/10.1016/j.jcis.2010.08.072.Search in Google Scholar PubMed

48. Capek, I. Adv. Colloid Interface Sci. 2004, 110, 49–74; https://doi.org/10.1016/j.cis.2004.02.003.Search in Google Scholar PubMed

49. Solanki, J. N., Murthy, Z. V. P. Ind. Eng. Chem. Res. 2011, 50, 12311–12323; https://doi.org/10.1021/ie201649x.Search in Google Scholar

50. Solanki, J. N., Sengupta, R., Murthy, Z. Solid State Sci. 2010, 12, 1560–1566; https://doi.org/10.1016/j.solidstatesciences.2010.06.021.Search in Google Scholar

51. Zhang, W., Qiao, X., Chen, J. Chem. Phys. 2006, 330, 495–500; https://doi.org/10.1016/j.chemphys.2006.09.029.Search in Google Scholar

52. Zhang, W., Qiao, X., Chen, J. Mater. Sci. Eng. B 2007, 142, 1–15; https://doi.org/10.1016/j.mseb.2007.06.014.Search in Google Scholar

53. Salabat, A., Mirhoseini, F. J. Mol. Liq. 2018, 268, 849–853; https://doi.org/10.1016/j.molliq.2018.07.112.Search in Google Scholar

54. Xia, L., Hu, X., Kang, X., Zhao, H., Sun, M., Cihen, X. Colloid. Surface. Physicochem. Eng. Aspect. 2010, 367, 96–101; https://doi.org/10.1016/j.colsurfa.2010.06.020.Search in Google Scholar

55. Righini, G. C., Chiappini, A. Opt. Eng. 2014, 53, 071819; https://doi.org/10.1117/1.oe.53.7.071819.Search in Google Scholar

56. Shahjahan, M., Rahman, M. H., Hossain, M. S., Khatun, M. A., Islam, A., Begum, M. H. A. Nanosci. Nanometrol. 2017, 3, 34–39.10.11648/j.nsnm.20170301.16Search in Google Scholar

57. Shukla, S., Seal, S. Nanostruct. Mater. 1999, 11, 1181–1193; https://doi.org/10.1016/s0965-9773(99)00409-2.Search in Google Scholar

58. Liu, D., Li, C., Zhou, F., Zhang, T., Zhang, H., Li, X., Duan, G., Cai, W., Li, Y. Sci. Rep. 2015, 5, 1–9; https://doi.org/10.1038/srep07686.Search in Google Scholar PubMed PubMed Central

59. Li, W., Camargo, P. H., Lu, X., Xia, Y. Nano Lett. 2009, 9, 485–490; https://doi.org/10.1021/nl803621x.Search in Google Scholar PubMed PubMed Central

60. Patel, K., Kapoor, S., Dave, D. P., Mukherjee, T. Res. Chem. Intermed. 2006, 32; https://doi.org/10.1163/156856706775372771.Search in Google Scholar

61. Mezni, A., Mlayah, A., Serin, V., Smiri, L. S. Mater. Chem. Phys. 2014, 147, 496–503; https://doi.org/10.1016/j.matchemphys.2014.05.022.Search in Google Scholar

62. Zhang, Q., Xie, J., Yu, Y., Yang, J., Lee, J. Y. Small 2010, 6, 523–527; https://doi.org/10.1002/smll.200902033.Search in Google Scholar PubMed

63. Flores-Rojas, G., López-Saucedo, F., Bucio, E. Radiat. Phys. Chem. 2020, 169, 107962; https://doi.org/10.1016/j.radphyschem.2018.08.011.Search in Google Scholar

64. Eisa, W. H., Abdel-Moneam, Y. K., Shaaban, Y., Abdel-Fattah, A. A., Abou Zeid, A. M. Mater. Chem. Phys. 2011, 128, 109–113; https://doi.org/10.1016/j.matchemphys.2011.02.076.Search in Google Scholar

65. Swaroop, K., Francis, S., Somashekarappa, H. Mater. Today: Proc. 2016, 3, 1792–1798; https://doi.org/10.1016/j.matpr.2016.04.076.Search in Google Scholar

66. Gasaymeh, S. S., Radiman, S., Heng, L. Y., Saion, E., Saeed, G. M. Afr. Rev. Phys. 2010, 4.Search in Google Scholar

67. Iqbal, M., Fatima, M., Javed, T., Anam, A., Nazir, A., Kanwal, Q., Shehzadi, Z., Khan, M., Nisar, J., Abbas, M. Mater. Res. Express 2020, 7, 015070; https://doi.org/10.1088/2053-1591/ab692e.Search in Google Scholar

68. Dharmarathne, L., Ashokkumar, M., Grieser, F. J. Phys. Chem. 2012, 116, 7775–7782; https://doi.org/10.1021/jp3037507.Search in Google Scholar PubMed

69. Okitsu, K., Ashokkumar, M., Grieser, F. J. Phys. Chem. B 2005, 109, 20673–20675; https://doi.org/10.1021/jp0549374.Search in Google Scholar PubMed

70. Islam, M. H., Paul, M. T., Burheim, O. S., Pollet, B. G. Ultrason. Sonochem. 2019, 59, 104711; https://doi.org/10.1016/j.ultsonch.2019.104711.Search in Google Scholar PubMed

71. Zhang, J.-P., Chen, P., Sun, C.-H., Hu, X.-J. Appl. Catal. A Gen. 2004, 266, 49–54; https://doi.org/10.1016/j.apcata.2004.01.025.Search in Google Scholar

72. Augustine, A. K., Nampoori, V., Kailasnath, M. Optik 2014, 125, 6696–6699; https://doi.org/10.1016/j.ijleo.2014.08.075.Search in Google Scholar

73. Oluwafemi, O. S., Mochochoko, T., Leo, A. J., Mohan, S., Jumbam, D. N., Songca, S. P. Mater. Lett. 2016, 185, 576–579; https://doi.org/10.1016/j.matlet.2016.08.116.Search in Google Scholar

74. Navaladian, S., Viswanathan, B., Viswanath, R., Varadarajan, T. Nanoscale Res. Lett. 2007, 2, 44–48; https://doi.org/10.1007/s11671-006-9028-2.Search in Google Scholar PubMed PubMed Central

75. Hosseinpour-Mashkani, S. M., Ramezani, M. Mater. Lett. 2014, 130, 259–262; https://doi.org/10.1016/j.matlet.2014.05.133.Search in Google Scholar

76. Crespo, J., Guari, Y., Ibarra, A., Larionova, J., Lasanta, T., Laurencin, D., López-de-Luzuriaga, J. M., Monge, M., Olmos, M. E., Richeter, S. Dalton Trans. 2014, 43, 15713–15718; https://doi.org/10.1039/c4dt02160f.Search in Google Scholar PubMed

77. Nakamoto, M., Yamamoto, M., Fukusumi, M. Chem. Commun. 2002, 1622–1623; https://doi.org/10.1039/b203736j.Search in Google Scholar PubMed

78. Compagnini, G., Scalisi, A. A., Puglisi, O., Spinella, C. J. Mater. Res. 2004, 19, 2795–2798; https://doi.org/10.1557/jmr.2004.0401.Search in Google Scholar

79. Sportelli, M. C., Izzi, M., Volpe, A., Clemente, M., Picca, R. A., Ancona, A., Lugarà, P. M., Palazzo, G., Cioffi, N. Antibiotics 2018, 7, 67; https://doi.org/10.3390/antibiotics7030067.Search in Google Scholar PubMed PubMed Central

80. Wender, H., Andreazza, M. L., Correia, R. R., Teixeira, S. R., Dupont, J. Nanoscale 2011, 3, 1240–1245; https://doi.org/10.1039/c0nr00786b.Search in Google Scholar PubMed

81. Wender, H., Migowski, P., Feil, A. F., Teixeira, S. R., Dupont, J. Coord. Chem. Rev. 2013, 257, 2468–2483; https://doi.org/10.1016/j.ccr.2013.01.013.Search in Google Scholar

82. Sergievskaya, A., O’Reilly, A., Chauvin, A., Veselý, J., Panepinto, A., De Winter, J., Cornil, D., Cornil, J., Konstantinidis, S. Colloids Surf. A Physicochem. Eng. Asp. 2021, 126286; https://doi.org/10.1016/j.colsurfa.2021.126286.Search in Google Scholar

83. Hatakeyama, Y., Morita, T., Takahashi, S., Onishi, K., Nishikawa, K. J. Phys. Chem. C 2011, 115, 3279–3285; https://doi.org/10.1021/jp110455k.Search in Google Scholar

84. Mishra, Y., Mohapatra, S., Kabiraj, D., Mohanta, B., Lalla, N., Pivin, J., Avasthi, D. Scripta Mater. 2007, 56, 629–632; https://doi.org/10.1016/j.scriptamat.2006.12.008.Search in Google Scholar

85. Sasmaz, M., Obek, E., Sasmaz, A. Bull. Environ. Contam. Toxicol. 2016, 97, 832–837; https://doi.org/10.1007/s00128-016-1929-x.Search in Google Scholar PubMed

86. Sasmaz, M., Akgul, B., Yıldırım, D., Sasmaz, A. Int. J. Phytoremediation 2016, 18, 1164–1170; https://doi.org/10.1080/15226514.2016.1183582.Search in Google Scholar PubMed

87. Obek, E., Sasmaz, A. Bull. Environ. Contam. Toxicol. 2011, 86, 217–220; https://doi.org/10.1007/s00128-011-0197-z.Search in Google Scholar PubMed

88. Sasmaz, A., Sasmaz, M. Environ. Exp. Bot. 2009, 67, 139–144; https://doi.org/10.1016/j.envexpbot.2009.06.014.Search in Google Scholar

89. Sasmaz, A., Obek, E., Hasar, H. Ecol. Eng. 2008, 33, 278–284; https://doi.org/10.1016/j.ecoleng.2008.05.006.Search in Google Scholar

90. Rajput, K., Raghuvanshi, S., Bhatt, A., Rai, S. K., Agrawal, P. K. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 1513–1528; https://doi.org/10.20546/ijcmas.2017.607.182.Search in Google Scholar

91. Ahmed, B., Hashmi, A., Khan, M. S., Musarrat, J. Adv. Powder Technol. 2018, 29, 1601–1616; https://doi.org/10.1016/j.apt.2018.03.025.Search in Google Scholar

92. Saratale, R. G., Shin, H.-S., Kumar, G., Benelli, G., Ghodake, G. S., Jiang, Y. Y., Kim, D. S., Saratale, G. D. Environ. Sci. Pollut. Control Ser. 2018, 25, 10250–10263; https://doi.org/10.1007/s11356-017-8724-z.Search in Google Scholar PubMed

93. Yadav, M., Kaur, P. Int. J. Nanoparticles (IJNP) 2018, 10, 165–177; https://doi.org/10.1504/ijnp.2018.10015065.Search in Google Scholar

94. Suresh, A. K., Pelletier, D. A., Wang, W., Broich, M. L., Moon, J.-W., Gu, B., Allison, D. P., Joy, D. C., Phelps, T. J., Doktycz, M. J. Acta Biomater. 2011, 7, 2148–2152; https://doi.org/10.1016/j.actbio.2011.01.023.Search in Google Scholar PubMed

95. Singh, R., Shedbalkar, U. U., Wadhwani, S. A., Chopade, B. A. Appl. Microbiol. Biotechnol. 2015, 99, 4579–4593; https://doi.org/10.1007/s00253-015-6622-1.Search in Google Scholar PubMed

96. Manikprabhu, D., Lingappa, K. J. Pharm. Res. 2013, 6, 255–260; https://doi.org/10.1016/j.jopr.2013.01.022.Search in Google Scholar

97. Rashid, A., Bhatti, H. N., Iqbal, M., Noreen, S. Ecol. Eng. 2016, 91, 459–471; https://doi.org/10.1016/j.ecoleng.2016.03.014.Search in Google Scholar

98. Birla, S., Tiwari, V., Gade, A., Ingle, A., Yadav, A., Rai, M. Lett. Appl. Microbiol. 2009, 48, 173–179; https://doi.org/10.1111/j.1472-765x.2008.02510.x.Search in Google Scholar

99. Chauhan, A., Zubair, S., Tufail, S., Sherwani, A., Sajid, M., Raman, S. C., Azam, A., Owais, M. Int. J. Nanomed. 2011, 6, 2305.10.2147/IJN.S23195Search in Google Scholar PubMed PubMed Central

100. Benabdallah, N., Harrache, D., Mir, A., De La Guardia, M., Benhachem, F. Chem. Int. 2017, 3, 220–231.Search in Google Scholar

101. Aslam, A., Thomas-Hall, S. R., Manzoor, M., Jabeen, F., Iqbal, M., uz Zaman, Q., Schenk, P. M., Asif Tahir, M. J. Photochem. Photobiol. B Biol. 2018, 179, 126–133; https://doi.org/10.1016/j.jphotobiol.2018.01.003.Search in Google Scholar PubMed

102. Hussain, F., Shah, S. Z., Zhou, W., Iqbal, M. J. Photochem. Photobiol. B Biol. 2017, 170, 91–98; https://doi.org/10.1016/j.jphotobiol.2017.03.021.Search in Google Scholar PubMed

103. Sasmaz, M., Senel, G. U., Obek, E. Environ. Geochem. Health 2020, 43, 1–14; https://doi.org/10.1007/s10653-020-00629-9.Search in Google Scholar PubMed

104. Sasmaz, M., Öbek, E., Sasmaz, A. Appl. Geochem. 2019, 100, 287–292; https://doi.org/10.1016/j.apgeochem.2018.12.011.Search in Google Scholar

105. Sasmaz, M., Obek, E., Sasmaz, A. Water Environ. J. 2018, 32, 75–83; https://doi.org/10.1111/wej.12301.Search in Google Scholar

106. Palutoglu, M., Akgul, B., Suyarko, V., Yakovenko, M., Kryuchenko, N., Sasmaz, A. Bull. Environ. Contam. Toxicol. 2018, 100, 293–297; https://doi.org/10.1007/s00128-017-2220-5.Search in Google Scholar PubMed

107. Yildirim, D., Sasmaz, A. J. Geochem. Explor. 2017, 182, 228–234; https://doi.org/10.1016/j.gexplo.2016.11.005.Search in Google Scholar

108. Venkatesan, J., Manivasagan, P., Kim, S.-K., Kirthi, A. V., Marimuthu, S., Rahuman, A. A. Bioproc. Biosyst. Eng. 2014, 37, 1591–1597; https://doi.org/10.1007/s00449-014-1131-7.Search in Google Scholar PubMed

109. Rajeshkumar, S., Malarkodi, C., Vanaja, M., Gnanajobitha, G., Paulkumar, K., Kannan, C., Annadurai, G. Der Pharma Chem. 2013, 5, 224–229.10.1016/j.dit.2013.05.005Search in Google Scholar

110. Manikandakrishnan, M., Palanisamy, S., Vinosha, M., Kalanjiaraja, B., Mohandoss, S., Manikandan, R., Tabarsa, M., You, S., Prabhu, N. M. J. Drug Deliv. Sci. Technol. 2019, 54, 101345; https://doi.org/10.1016/j.jddst.2019.101345.Search in Google Scholar

111. Gomaa, H. H., Elshoubaky, G. A. Int. J. Curr. Pharm. Rev. Res. 2016, 7, 34–42.10.7897/2230-8407.07659Search in Google Scholar

112. Arya, A., Gupta, K., Chundawat, T. S., Vaya, D. Bioinorgan. Chem. Appl. 2018, 2018, 1–5; https://doi.org/10.1155/2018/7879403.Search in Google Scholar PubMed PubMed Central

113. Edison, T. N. J. I., Atchudan, R., Kamal, C., Lee, Y. R. Bioproc. Biosyst. Eng. 2016, 39, 1401–1408; https://doi.org/10.1007/s00449-016-1616-7.Search in Google Scholar PubMed

114. Raza, M. A., Kanwal, Z., Rauf, A., Sabri, A. N., Riaz, S., Naseem, S. Nanomaterials 2016, 6, 74; https://doi.org/10.3390/nano6040074.Search in Google Scholar PubMed PubMed Central

115. Raj, S., Mali, S. C., Trivedi, R. Biochem. Biophys. Res. Commun. 2018, 503, 2814–2819; https://doi.org/10.1016/j.bbrc.2018.08.045.Search in Google Scholar PubMed

116. Vinay, S., Chandrasekhar, N. Mater. Today: Proc. 2019, 9, 499–505; https://doi.org/10.1016/j.matpr.2018.10.368.Search in Google Scholar

117. Wang, L., Xu, J., Yan, Y., Liu, H., Karunakaran, T., Li, F. Artif. Cells Nanomed Biotechnol 2019, 47, 1617–1627; https://doi.org/10.1080/21691401.2019.1594862.Search in Google Scholar PubMed

118. Vijayan, S. R., Santhiyagu, P., Singamuthu, M., Kumari Ahila, N., Jayaraman, R., Ethiraj, K. Sci. World J. 2014, 2014; https://doi.org/10.1155/2014/938272.Search in Google Scholar PubMed PubMed Central

119. Pugazhendhi, A., Prabakar, D., Jacob, J. M., Karuppusamy, I., Saratale, R. G. Microb. Pathog. 2018, 114, 41–45; https://doi.org/10.1016/j.micpath.2017.11.013.Search in Google Scholar PubMed

120. Valsalam, S., Agastian, P., Esmail, G. A., Ghilan, A.-K. M., Al-Dhabi, N. A., Arasu, M. V. J. Photochem. Photobiol. B Biol. 2019, 201, 111670; https://doi.org/10.1016/j.jphotobiol.2019.111670.Search in Google Scholar PubMed

121. Awwad, A. M., Amer, M. W. Chem. Int. 2020, 6, 210–217; https://doi.org/10.13109/9783666352102.210.Search in Google Scholar

122. Folorunso, A., Akintelu, S., Oyebamiji, A. K., Ajayi, S., Abiola, B., Abdusalam, I., Morakinyo, A. J. Nanostructure Chem. 2019, 9, 111–117; https://doi.org/10.1007/s40097-019-0301-1.Search in Google Scholar

123. Abdellatif, H., El Rady, E. A. Chem. Int. 2020, 6, 122–130.Search in Google Scholar

124. Awwad, A. M., Amer, M. W., Al-Aqarbeh, M. M. Chem. Int. 2020, 6, 168–178.Search in Google Scholar

125. Shindy, H. A., El-Maghraby, M. A., Goma, M. M., Harb, N. A. Chem. Int. 2020, 6, 187–199.Search in Google Scholar

126. Abdellatif, H., Abd El Rady, E. Chem. Int. 2020, 6, 200–209.Search in Google Scholar

127. Obi, C., Ibezim-Ezeani, M. U., Nwagbo, E. J. Chem. Int. 2020, 6, 91–97.Search in Google Scholar

128. Shindy, H. A., El-Maghraby, M. A., Goma, M. M., Harb, N. A. Chem. Int. 2020, 6, 30–41.Search in Google Scholar

129. Song, J. Y., Jang, H.-K., Kim, B. S. Process Biochem. 2009, 44, 1133–1138; https://doi.org/10.1016/j.procbio.2009.06.005.Search in Google Scholar

130. Alaqarbeh, M., Shammout, M., Awwad, A. Chem. Int. 2020, 6, 49–55.Search in Google Scholar

131. Haider, A. J., AL–Anbari, R. H., Kadhim, G. R., Salame, C. T. Energy Procedia 2017, 119, 332–345; https://doi.org/10.1016/j.egypro.2017.07.117.Search in Google Scholar

132. Lydia, D. E., Khusro, A., Immanuel, P., Esmail, G. A., Al-Dhabi, N. A., Arasu, M. V. J. Photochem. Photobiol. B Biol. 2020, 206, 111868; https://doi.org/10.1016/j.jphotobiol.2020.111868.Search in Google Scholar PubMed

133. Das, P., Ghosal, K., Jana, N. K., Mukherjee, A., Basak, P. Mater. Chem. Phys. 2019, 228, 310–317; https://doi.org/10.1016/j.matchemphys.2019.02.064.Search in Google Scholar

134. Panáček, A., Prucek, R., Hrbáč, J., Nevečná, T. J., Šteffková, J., Zbořil, R., Kvitek, L. Chem. Mater. 2014, 26, 1332–1339.10.1021/cm400635zSearch in Google Scholar

135. Atkins, P., De Paula, J. Molecular spectroscopy 2: electronic transitions; WH Freeman and Company: New York, 2010; p. 489.10.1093/hesc/9780199541423.003.0011Search in Google Scholar

136. Takale, B. S., Bao, M., Yamamoto, Y. Org. Biomol. Chem. 2014, 12, 2005–2027; https://doi.org/10.1039/c3ob42207k.Search in Google Scholar PubMed

137. Suchomel, P., Kvitek, L., Prucek, R., Panacek, A., Halder, A., Vajda, S., Zboril, R. Sci. Rep. 2018, 8, 1–11; https://doi.org/10.1038/s41598-018-22976-5.Search in Google Scholar PubMed PubMed Central

138. Mao, H., Ji, C., Liu, M., Cao, Z., Sun, D., Xing, Z., Chen, X., Zhang, Y., Song, X.-M. Appl. Surf. Sci. 2018, 434, 522–533; https://doi.org/10.1016/j.apsusc.2017.10.209.Search in Google Scholar

139. Jayapriya, M., Dhanasekaran, D., Arulmozhi, M., Nandhakumar, E., Senthilkumar, N., Sureshkumar, K. Res. Chem. Intermed. 2019, 45, 3617–3631; https://doi.org/10.1007/s11164-019-03812-5.Search in Google Scholar

140. Obeid, L., Bée, A., Talbot, D., Jaafar, S. B., Dupuis, V., Abramson, S., Cabuil, V., Welschbillig, M. J. Colloid Interface Sci. 2013, 410, 52–58; https://doi.org/10.1016/j.jcis.2013.07.057.Search in Google Scholar PubMed

141. Nagar, N., Devra, V. Heliyon 2019, 5, e01356; https://doi.org/10.1016/j.heliyon.2019.e01356.Search in Google Scholar PubMed PubMed Central

142. Mene, D. F., Iwuoha, G. N. Chem. Int. 2021, 7, 217–223; https://doi.org/10.1002/9783527817047.index.Search in Google Scholar

143. Jalal, G., Abbas, N., Deeba, F., Butt, T., Jilal, S., Sarfraz, S. Chem. Int. 2021, 7, 197–207.Search in Google Scholar

144. Elsherif, K. M., El-Dali, A., Alkarewi, A. A., Mabrok, A. Chem. Int. 2021, 7, 79–89; https://doi.org/10.1017/cbo9781316151877.018.Search in Google Scholar

145. Chokor, A. A. Chem. Int. 2021, 7, 188–196.10.1002/vetr.282Search in Google Scholar

146. Awwad, A. M., Salem, N. M., Amer, M. W., Shammout, M. W. Chem. Int. 2021, 7, 139–144.Search in Google Scholar

147. Abbas, N., Butt, M. T., Ahmad, M. M., Deeba, F., Hussain, N. Chem. Int. 2021, 7, 103–111.Search in Google Scholar

148. Ukpaka, C. P., Lezorghia, S. B., Nwosu, H. Chem. Int. 2020, 6, 160–167; https://doi.org/10.5406/j.ctv160btst.27.Search in Google Scholar

149. Ukpaka, C. P., Eno, O. N. Chem. Int. 2020, 7, 62–70.Search in Google Scholar

150. Liu, H., Lian, T., Liu, Y., Hong, Y., Sun, D., Li, Q. Ind. Eng. Chem. Res. 2017, 56, 5262–5270. https://doi.org/10.1021/acs.iecr.7b00064.Search in Google Scholar

151. Ivanova, N., Gugleva, V., Dobreva, M., Pehlivanov, I., Stefanov, S., Andonova, V. Nanomedicines; IntechOpen: London, UK, 2018.Search in Google Scholar

152. Greulich, C., Diendorf, J., Simon, T., Eggeler, G., Epple, M., Köller, M. J. A. B. Acta Biomaterialia 2011, 7, 347–354. https://doi.org/10.1016/j.actbio.2010.08.003.Search in Google Scholar PubMed

153. Jeyaraj, M., Sathishkumar, G., Sivanandhan, G., MubarakAli, D., Rajesh, M., Arun, R., Kapildev, G., Manickavasagam, M., Thajuddin, N., K. J. C. Premkumar. Colloids Surf. B Biointerfaces 2013, 106, 86–92; https://doi.org/10.1016/j.colsurfb.2013.01.027.Search in Google Scholar PubMed

154. Kawata, K., Osawa, M., Okabe, S. J. Environ. Sci. Technol. 2009, 43, 6046–6051; https://doi.org/10.1021/es900754q.Search in Google Scholar PubMed

155. Gurunathan, S., Han, J. W., Eppakayala, V., Jeyaraj, M., Kim, J.-H. BioMed Res. Int. 2013, 2013, 1–7; https://doi.org/10.1155/2013/535796.Search in Google Scholar PubMed PubMed Central

156. AshaRani, P., Low Kah Mun, G., Hande, M. P., Valiyaveettil, S. ACS Nano 2009, 3, 279–290; https://doi.org/10.1021/nn800596w.Search in Google Scholar PubMed

157. Vasanth, K., Ilango, K., MohanKumar, R., Agrawal, A., Dubey, G. P. Colloids Surf. B Biointerfaces 2014, 117, 354–359; https://doi.org/10.1016/j.colsurfb.2014.02.052.Search in Google Scholar PubMed

158. Liu, F., Mahmood, M., Xu, Y., Watanabe, F., Biris, A. S., Hansen, D. K., Inselman, A., Casciano, D., Patterson, T. A., Paule, M. G. Front. Neurosci. 2015, 9, 115; https://doi.org/10.3389/fnins.2015.00115.Search in Google Scholar PubMed PubMed Central

159. Zhang, X.-F., Shen, W., Gurunathan, S. Int. J. Mol. Sci. 2016, 17, 1603; https://doi.org/10.3390/ijms17101603.Search in Google Scholar PubMed PubMed Central

160. Park, E.-J., Yi, J., Kim, Y., Choi, K., Park, K. Toxicol. Vitro 2010, 24, 872–878; https://doi.org/10.1016/j.tiv.2009.12.001.Search in Google Scholar PubMed

161. Ahmed, K. B. R., Nagy, A. M., Brown, R. P., Zhang, Q., Malghan, S. G., Goering, P. L. Toxicol. Vitro 2017, 38, 179–192; https://doi.org/10.1016/j.tiv.2016.10.012.Search in Google Scholar PubMed

162. Carlson, C., Hussain, S. M., Schrand, A. M., Braydich-Stolle, L. K., Hess, K. L., Jones, R. L., Schlager, J. J. J. J. Phys. Chem. B 2008, 112, 13608–13619; https://doi.org/10.1021/jp712087m.Search in Google Scholar PubMed

163. Gurunathan, S., Lee, K.-J., Kalishwaralal, K., Sheikpranbabu, S., Vaidyanathan, R., Eom, S. H. Biomaterials 2009, 30, 6341–6350; https://doi.org/10.1016/j.biomaterials.2009.08.008.Search in Google Scholar PubMed

164. Asharani, P., Hande, M. P., Valiyaveettil, S. BMC Cell Biol. 2009, 10, 1–14; https://doi.org/10.1186/1471-2121-10-65.Search in Google Scholar

165. Agunbiade, S. O., Ojezele, O. J., Barinemene, M. Chem. Int. 2020, 6, 131–136; https://doi.org/10.1111/1756-185x.13621.Search in Google Scholar

166. Muhammad, I., Pandian, S., Hopper, W. Chem. Int. 2020, 6, 260–266; https://doi.org/10.2307/j.ctv18sqzjb.12.Search in Google Scholar

167. Mekonnen, A., Degu, Y., Carlson, R. Chem. Int. 2020, 6, 1–10.Search in Google Scholar

168. Song, J. Y., Kim Korean, B. S. J. Chem. Eng. 2008, 25, 808–811; https://doi.org/10.1007/s11814-008-0133-z.Search in Google Scholar

169. Mohammed, A. E. Asian Pac. J. Trop. Biomed 2015, 5, 382–386; https://doi.org/10.1016/s2221-1691(15)30373-7.Search in Google Scholar

170. Shanmuganathan, R., Karuppusamy, I., Saravanan, M., Muthukumar, H., Ponnuchamy, K., Ramkumar, V. S., Pugazhendhi, A. Curr. Pharmaceut. Des. 2019, 25, 2650–2660; https://doi.org/10.2174/1381612825666190708185506.Search in Google Scholar PubMed

171. Chandrakanth, R. K., Ashajyothi, C., Oli, A. K., Prabhurajeshwar, C. J. Chem. 2014, 30, 1253–1262; https://doi.org/10.13005/ojc/300341.Search in Google Scholar

172. Patil, M. P., Kim, G.-D. Appl. Microbiol. Biotechnol. 2017, 101, 79–92; https://doi.org/10.1007/s00253-016-8012-8.Search in Google Scholar PubMed

173. Lee, B., Lee, D. G. J. Appl. Microbiol. 2019, 127, 701–712; https://doi.org/10.1111/jam.14357.Search in Google Scholar PubMed

174. Katas, H., Lim, C. S., Azlan, A. Y. H. N., Buang, F., Busra, M. F. M. Saudi Pharmaceut. J. 2019, 27, 283–292; https://doi.org/10.1016/j.jsps.2018.11.010.Search in Google Scholar PubMed PubMed Central

175. Nishanthi, R., Malathi, S., Palani, P. Mater. Sci. Eng. C 2019, 96, 693–707.10.1016/j.msec.2018.11.050Search in Google Scholar PubMed

176. Mythili, R., Selvankumar, T., Srinivasan, P., Sengottaiyan, A., Sabastinraj, J., Ameen, F., Al-Sabri, A., Kamala-Kannan, S., Govarthanan, M., Kim, H. J. Mol. Liq. 2018, 262, 318–321; https://doi.org/10.1016/j.molliq.2018.04.087.Search in Google Scholar

177. Rasheed, T., Bilal, M., Iqbal, H. M., Li, C. Colloids Surf. B Biointerfaces 2017, 158, 408–415; https://doi.org/10.1016/j.colsurfb.2017.07.020.Search in Google Scholar PubMed

178. Panáček, A., Kvitek, L., Prucek, R., Kolář, M., Večeřová, R., Pizúrová, N., Sharma, V. K., Nevěčná, T. J., Zbořil, R. J. Phys. Chem. B 2006, 110, 16248–16253.10.1021/jp063826hSearch in Google Scholar PubMed

179. Parashar, V., Parashar, R., Sharma, B., Pandey, A. C. Dig. J. Nanomater. Biostructures 2009, 4, 1–7.Search in Google Scholar

180. Mittal, A. K., Chisti, Y., Banerjee, U. C. Biotechnol. Adv. 2013, 31, 346–356; https://doi.org/10.1016/j.biotechadv.2013.01.003.Search in Google Scholar PubMed

181. Kumar, V. S., Nagaraja, B., Shashikala, V., Padmasri, A., Madhavendra, S. S., Raju, B. D., Rao, K. R. J. Mol. Catal. Chem. 2004, 223, 313–319; https://doi.org/10.1016/j.molcata.2003.09.047.Search in Google Scholar

Received: 2021-06-26
Accepted: 2021-09-20
Published Online: 2021-10-19
Published in Print: 2022-03-28

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2021-3084/html
Scroll to top button