Startseite Extraction of Heavy Metals from Aqueous Medium by Husk Biomass: Adsorption Isotherm, Kinetic and Thermodynamic study
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Extraction of Heavy Metals from Aqueous Medium by Husk Biomass: Adsorption Isotherm, Kinetic and Thermodynamic study

  • Khalida Naseem , Rahila Huma , Aiman Shahbaz , Jawaria Jamal , Muhammad Zia Ur Rehman , Ahsan Sharif , Ejaz Ahmed , Robina Begum , Ahmad Irfan , Abdullah G. Al-Sehemi und Zahoor H. Farooqi ORCID logo EMAIL logo
Veröffentlicht/Copyright: 5. Mai 2018

Abstract

This study describes the adsorption of Cu (II), Co (II) and Ni (II) ions from wastewater on Vigna radiata husk biomass. The ability of adsorbent to capture the metal ions has been found to be in the order of Ni (II)>Co (II) and Cu (II) depending upon the size and nature of metal ions to be adsorbed. It has been observed that percentage removal of Cu (II), Co (II) and Ni (II) ions increases with increase of adsorbent dosage, contact time and pH of the medium but up to a certain extent. Maximum adsorption capacity (qmax) for Cu (II), Co (II) and Ni (II) ions has been found to be 11.05, 15.04 and 19.88 mg/g, respectively, under optimum conditions of adsorbent dosage, contact time and pH of the medium. Langmuir model best fits the adsorption process with R2 value approaches to unity for all metal ions as compared to other models because adsorption sites are seemed to be equivalent and only monolayer adsorption may occur as a result of binding of metal ion with a functional moiety of adsorbent. Pseudo second order kinetic model best interprets the adsorption process of Cu (II), Co (II) and Ni (II) ions. Thermodynamic parameters such as negative value of Gibbs energy (∆G°) gives information about feasibility and spontaneity of the process. Adsorption process was found to be endothermic for Cu (II) ions while exothermic for Co (II) and Ni (II) ions as signified by the value of enthalpy change (∆H°). Husk biomass was recycled three times for removal of Ni (II) from aqueous medium to investigate its recoverability and reusability. Moreover V. radiata husk biomass has a potential to extract Cu (II) and Ni (II) from electroplating wastewater to overcome the industrial waste water pollution.

Acknowledgments

This work was supported by University of the Punjab, Lahore, Pakistan under research Grant No:/999/EST.I for the fiscal year of 2017–2018. A. Irfan and A. G. Al-Sehemi would like to acknowledge the support of the King Khalid University for this research through a grant RCAMS/KKU/005-18 under the (Research Center for Advanced Materials Science) at King Khalid University, Kingdom of Saudi Arabia.

References

1. M. Athar, U. Farooq, M. Aslam, M. Salman, Appl. Water Sci. 3 (2013) 665.10.1007/s13201-013-0115-0Suche in Google Scholar

2. S. Ben-Ali, I. Jaouali, S. Souissi-Najar, A. Ouederni, J. Cleaner Prod. 142 (2017) 3809.10.1016/j.jclepro.2016.10.081Suche in Google Scholar

3. F. Cuomo, F. Venditti, G. Cinelli, A. Ceglie, F. Lopez, Z. Phys. Chem. 230 (2016) 1269.10.1515/zpch-2015-0725Suche in Google Scholar

4. S. S. A. El-Rehim, H. H. Hassan, M. A. M. Deyab, A. A. El Moneim, Z. Phys. Chem. 230 (2016) 67.10.1515/zpch-2015-0614Suche in Google Scholar

5. M. Jain, V. Garg, K. Kadirvelu, M. Sillanpää, Int. J. Environ. Sci. Technol. 13 (2016) 493.10.1007/s13762-015-0855-5Suche in Google Scholar

6. A. Yargıç, R. Y. Şahin, N. Özbay, E. Önal, J. Cleaner Prod. 88 (2015) 152.10.1016/j.jclepro.2014.05.087Suche in Google Scholar

7. S. A. El-Rehim, M. Deyab, H. Hassan, A. M. Shaltot, Z. Phys. Chem. 231 (2017) 1573.10.1515/zpch-2016-0905Suche in Google Scholar

8. H. Nady, M. El-Rabiei, M. Migahed, M. Fathy, Z. Phys. Chem. 231 (2017) 1179.10.1515/zpch-2016-0886Suche in Google Scholar

9. A. Demirbas, J. Hazard. Mater. 157 (2008) 220.10.1016/j.jhazmat.2008.01.024Suche in Google Scholar PubMed

10. L. Mino, C. Negri, A. Zecchina, G. Spoto, Z. Phys. Chem. 230 (2016) 1441.10.1515/zpch-2015-0733Suche in Google Scholar

11. K. Naseem, Z. H. Farooqi, R. Begum, A. Irfan, J. Cleaner Prod. 187 (2018) 296.10.1016/j.jclepro.2018.03.209Suche in Google Scholar

12. M. Mohsen-Nia, P. Montazeri, H. Modarress, Desalination 217 (2007) 276.10.1016/j.desal.2006.01.043Suche in Google Scholar

13. A. Smara, R. Delimi, E. Chainet, J. Sandeaux, Sep. Sci. Technol. 57 (2007) 103.10.1016/j.seppur.2007.03.012Suche in Google Scholar

14. G. Sharma, D. Pathania, M. Naushad, Ionics 21 (2015) 1045.10.1007/s11581-014-1269-ySuche in Google Scholar

15. M. I. Din, K. Ijaz, K. Naseem, Chem. Ind. Chem. Eng. Q 23 (2017) 399.10.2298/CICEQ151217054DSuche in Google Scholar

16. K. Naseem, Z. H. Farooqi, M. Z. U. Rehman, M. A. U. Rehman, M. Ghufran, Rev. Chem. Eng. doi.org/10.1515/revce-2017–0042.Suche in Google Scholar

17. S. Marković, A. Stanković, Z. Lopičić, S. Lazarević, M. Stojanović, D. Uskoković, J. Environ. Chem. Eng. 3 (2015) 716.10.1016/j.jece.2015.04.002Suche in Google Scholar

18. B. Nasernejad, T. E. Zadeh, B. B. Pour, M. E. Bygi, A. Zamani, Process Biochem. 40 (2005) 1319.10.1016/j.procbio.2004.06.010Suche in Google Scholar

19. L. Hao, P. Wang, S. Valiyaveettil, Sci. Rep. 7 (2017) 42881.10.1038/srep42881Suche in Google Scholar PubMed PubMed Central

20. P. Indhumathi, S. Sathiyaraj, J. P. Koelmel, S. U. Shoba, C. Jayabalakrishnan, M. Saravanabhavan, Z. Phys. Chem. 232 (2018) 527.10.1515/zpch-2016-0900Suche in Google Scholar

21. A. Shanmugalingam, A. Murugesan, Z. Phys. Chem. 232 (2018) 489.10.1515/zpch-2017-0998Suche in Google Scholar

22. Z. Aksu, İ. A. İşoğlu, Process Biochem. 40 (2005) 3031.10.1016/j.procbio.2005.02.004Suche in Google Scholar

23. V. Dang, H. Doan, T. Dang-Vu, A. Lohi, Bioresour. Technol. 100 (2009) 211.10.1016/j.biortech.2008.05.031Suche in Google Scholar PubMed

24. S. Choudhary, V. Goyal, S. Singh, Clean Technol. Environ. Policy 17 (2015) 1039.10.1007/s10098-014-0860-2Suche in Google Scholar

25. A. Ahmadpour, M. Tahmasbi, T. R. Bastami, J. A. Besharati, J. Hazard. Mater. 166 (2009) 925.10.1016/j.jhazmat.2008.11.103Suche in Google Scholar PubMed

26. M. Ajmal, R. A. K. Rao, R. Ahmad, J. Ahmad, J. Hazard. Mater. 79 (2000) 117.10.1016/S0304-3894(00)00234-XSuche in Google Scholar PubMed

27. B. Zhu, T. Fan, D. Zhang, J. Hazard. Mater. 153 (2008) 300.10.1016/j.jhazmat.2007.08.050Suche in Google Scholar PubMed

28. A. Bhatnagar, A. Minocha, M. Sillanpää, Biochem. Eng. J. 48 (2010) 181.10.1016/j.bej.2009.10.005Suche in Google Scholar

29. M. Salman, M. Athar, U. Farooq, S. Nazir, H. Nazir, Desalin. Water Treat. 51 (2013) 4390.10.1080/19443994.2012.749186Suche in Google Scholar

30. A. Saeed, M. W. Akhter, M. Iqbal, Sep. Purif. Tech. 45 (2005) 25.10.1016/j.seppur.2005.02.004Suche in Google Scholar

31. B. Kannamba, K. L. Reddy, B. AppaRao, J. Hazard. Mater. 175 (2010) 939.10.1016/j.jhazmat.2009.10.098Suche in Google Scholar PubMed

32. B. Yu, Y. Zhang, A. Shukla, S. S. Shukla, K. L. Dorris, J. Hazard. Mater. 80 (2000) 33.10.1016/S0304-3894(00)00278-8Suche in Google Scholar PubMed

33. H. Parab, S. Joshi, N. Shenoy, A. Lali, U. Sarma, M. Sudersanan, Process. Biochem. 41 (2006) 609.10.1016/j.procbio.2005.08.006Suche in Google Scholar

34. E. Malkoc, Y. Nuhoglu, J. Hazard. Mater. 127 (2005) 120.10.1016/j.jhazmat.2005.06.030Suche in Google Scholar PubMed

35. H. Hasar, J. Hazard. Mater. 97 (2003) 49.10.1016/S0304-3894(02)00237-6Suche in Google Scholar PubMed

36. F. A. Abu Al-Rub, M. Kandah, N. Al-Dabaybeh, Sep. Sci. Technol. 38 (2003) 483.10.1081/SS-120016586Suche in Google Scholar

37. M. Iqbal, A. Saeed, R. G. Edyvean, Chem. Eng. J. 225 (2013) 192.10.1016/j.cej.2013.03.079Suche in Google Scholar

38. Y. Li, L. Xia, R. Huang, C. Xia, S. Song, RSC Adv. 7 (2017) 34600.10.1039/C7RA06749FSuche in Google Scholar

39. R. A. K. Rao, A. Khatoon, J. Cleaner Prod. 165 (2017) 1280.10.1016/j.jclepro.2017.07.160Suche in Google Scholar

40. W. E. Oliveira, A. S. Franca, L. S. Oliveira, S. D. Rocha, J. Hazard. Mater. 152 (2008) 1073.10.1016/j.jhazmat.2007.07.085Suche in Google Scholar PubMed

41. Z. Huang, Q. Wu, S. Liu, T. Liu, B. Zhang, Carbohydr. Polym. 97 (2013) 496.10.1016/j.carbpol.2013.04.047Suche in Google Scholar PubMed

42. P. Liu, L. Jiang, L. Zhu, J. Guo, A. Wang, J. Ind. Eng. Chem. 23 (2015) 188.10.1016/j.jiec.2014.08.014Suche in Google Scholar

43. H. Pahlavanzadeh, A. Keshtkar, J. Safdari, Z. Abadi, J. Hazard. Mater. 175 (2010) 304.10.1016/j.jhazmat.2009.10.004Suche in Google Scholar PubMed

44. I. Suhasini, G. Sriram, S. Asolekar, G. Sureshkumar, Process Biochem. 34 (1999) 239.10.1016/S0032-9592(98)00090-9Suche in Google Scholar

45. L. V. A. Gurgel, L. F. Gil, Water Res. 43 (2009) 4479.10.1016/j.watres.2009.07.017Suche in Google Scholar PubMed

46. K. Ramesh, A. Rajappa, V. Nandhakumar, Z. Phys. Chem. 231 (2017) 1057.10.1515/zpch-2016-0868Suche in Google Scholar

47. M. Ajmal, M. Siddiq, N. Aktas, N. Sahiner, RSC Adv. 5 (2015) 43873.10.1039/C5RA05785JSuche in Google Scholar

48. N. Feng, X. Guo, S. Liang, Y. Zhu, J. Liu, J. Hazard. Mater. 185 (2011) 49.10.1016/j.jhazmat.2010.08.114Suche in Google Scholar PubMed

49. D. Bulgariu, L. Bulgariu, Bioresour. Technol. 103 (2012) 489.10.1016/j.biortech.2011.10.016Suche in Google Scholar PubMed

50. M. A. Javed, H. N. Bhatti, M. A. Hanif, R. Nadeem, Sep. Sci. Technol. 42 (2007) 3641.10.1080/01496390701710794Suche in Google Scholar

51. M. N. Zafar, R. Nadeem, M. A. Hanif, J. Hazard. Mater. 143 (2007) 478.10.1016/j.jhazmat.2006.09.055Suche in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2018-1182).


Received: 2018-03-15
Accepted: 2018-04-14
Published Online: 2018-05-05
Published in Print: 2019-02-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1182/html?lang=de
Button zum nach oben scrollen