Exploring the Effect of Electron Withdrawing Groups on Optoelectronic Properties of Pyrazole Derivatives as Efficient Donor and Acceptor Materials for Photovoltaic Devices
-
Ahmad Irfan
, Mehboobali Pannipara
, Abdullah G. Al-Sehemi , Muhammad Waseem Mumtaz , Mohammed A. Assiri , Aijaz Rasool Chaudhry und Shabbir Muhammad
Abstract
Multifunctional pyrazole derivative, i.e. 3-amino-1-(5-hydroxy-3-methyl-1H-pyrazol-4-yl)-1H-benzo[f]chromene-2-carbonitrile (PBCC) has been synthesized and characterized. To shed light on various properties of interests, the ground state geometry was optimized by adopting Density Functional Theory (PBE/TZ2P). The effect of different functionals on the absorption wavelengths was studied by using Time-Domain DFT (TDDFT), e.g. GGA functional PBE, hybrid functionals B3LYP and PBE0, rang separated functionals CAM-B3LYP, LCY-PBE and CAMY-B3LYP, Dispersion Corrections PBE-D3 and B3LYP-D3. Among all these functionals PBE and PBE-D3 were found to be good choices which reproduced the absorption spectra of the PBCC. With the aim to enhance the electro-optical, charge transfer and photovoltaic properties, five new derivatives were designed by di-substituting the –F, –Cl, –Br, –COOH and –CN at benzochromene moiety. The electron injection barrier, band gap alignment and related calculated photovoltaic parameters revealed that PBCC and its newly designed derivatives would be proficient to be used in photovoltaic devices. These compounds can be used as donor materials in dye-sensitized solar cells (DSSCs) with favorable type-II band alignment. Moreover, PBCC and most of its derivatives might also be good choice as efficient acceptors with poly(dithieno[3,2-b:2,3-d]pyrrole thiophene) (PDTPr-T) and donor materials with Phenyl-C61-butyric acid methyl ester (PC61BM) in organic solar cells.
Acknowledgements
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P.1/18/40.
References
1. Q. Yan, Y. Zhou, B.-B. Ni, Y. Ma, J. Wang, J. Pei, Y. Cao, J. Org. Chem. 73 (2008) 5328.10.1021/jo800606bSuche in Google Scholar PubMed
2. W. Sheng, Y.-Q. Zheng, Q. Wu, Y. Wu, C. Yu, L. Jiao, E. Hao, J.-Y. Wang, J. Pei, Org. Lett. 19 (2017) 2893.10.1021/acs.orglett.7b01133Suche in Google Scholar PubMed
3. A. Irfan, A. R. Chaudhry, S. Muhammad, A. G. Al-Sehemi, J. Mol. Graph. Model. 75 (2017) 209.10.1016/j.jmgm.2017.05.017Suche in Google Scholar PubMed
4. J. C. S. Costa, R. J. S. Taveira, C. F. R. A. C. Lima, A. Mendes, L. M. N. B. F. Santos, Opt. Mater. 58 (2016) 51.10.1016/j.optmat.2016.03.041Suche in Google Scholar
5. V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, J.-L. Brédas, Chem. Rev. 107 (2007) 926.10.1021/cr050140xSuche in Google Scholar PubMed
6. R. Hinterding, A. Feldhoff, Two-Dimensional Oxides: Recent Progress in Nanosheets, in: Zeitschrift für Physikalische Chemie, 2018, pp. 117.10.1515/zpch-2018-1125Suche in Google Scholar
7. J. Navas, F. Reyes-Pérez, R. Alcántara, C. Fernández-Lorenzo, G. Bernal Juan Jesús, J. Martín-Calleja, M(Al,Ni)-TiO2-Based Photoanode for Photoelectrochemical Solar Cells, in: Zeitschrift für Physikalische Chemie (2018), P. 559.10.1515/zpch-2017-1002Suche in Google Scholar
8. C. Chakravarty, P. Ghosh, B. Mandal, P. Sarkar, Understanding the Electronic Structure of Graphene Quantum Dot-Fullerene Nanohybrids for Photovoltaic Applications, in: Zeitschrift für Physikalische Chemie (2016), P. 777.10.1515/zpch-2015-0697Suche in Google Scholar
9. Y. Liu, D. Casper Michelle, O. Gozen Arif, S. Desai, E. Klem, J. Lewis, J.-P. Maria, D. Dickey Michael, J. Genzer, Buckled Topography to Enhance Light Absorption in Thin Film Organic Photovoltaics Comprising CuPc/C60 Bilayer Laminates, in: Zeitschrift für Physikalische Chemie (2015), P. 1251.10.1515/zpch-2014-0592Suche in Google Scholar
10. T. Lei, J.-Y. Wang, J. Pei, Chem. Mater. 26 (2014) 594.10.1021/cm4018776Suche in Google Scholar
11. I. V. Taydakov, A. A. Akkuzina, R. I. Avetisov, A. V. Khomyakov, R. R. Saifutyarov, I. C. Avetissov, J. Lumin. 177 (2016) 31.10.1016/j.jlumin.2016.04.017Suche in Google Scholar
12. J.-i. Ogawa, S. Agrawal, N. Koumura, S. Mori, J. Phys. Chem. C 120 (2016) 3612.10.1021/acs.jpcc.5b10432Suche in Google Scholar
13. F. Bella, C. Gerbaldi, C. Barolo, M. Gratzel, Chem. Soc. Rev. 44 (2015) 3431.10.1039/C4CS00456FSuche in Google Scholar PubMed
14. L. Huang, P. Ma, G. Deng, K. Zhang, T. Ou, Y. Lin, M. S. Wong, Dyes Pigm. 159 (2018) 107.10.1016/j.dyepig.2018.06.010Suche in Google Scholar
15. A. Irfan, A. R. Chaudhary, S. Muhammad, A. G. Al-Sehemi, H. Bo, M. W. Mumtaz, M. A. Qayyum, Results Phys. 11 (2018) 599.10.1016/j.rinp.2018.09.052Suche in Google Scholar
16. K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawa, M. Hanaya, Chem. Commun. 51 (2015) 15894.10.1039/C5CC06759FSuche in Google Scholar
17. E. Gondek, Mater. Lett. 112 (2013) 94.10.1016/j.matlet.2013.08.128Suche in Google Scholar
18. A. Cetin, A. Korkmaz, E. Erdoğan, A. Kösemen, Mater. Chem. Phys. 222 (2019) 37.10.1016/j.matchemphys.2018.09.080Suche in Google Scholar
19. B. Yıldız, E. Güzel, N. Menges, İ. Şişman, M. Kasım Şener, Solar Energy 174 (2018) 527.10.1016/j.solener.2018.09.039Suche in Google Scholar
20. E. Güzel, B. S. Arslan, V. Durmaz, M. Cesur, Ö. F. Tutar, T. Sarı, M. İşleyen, M. Nebioğlu, İ. Şişman, Solar Energy 173 (2018) 34.10.1016/j.solener.2018.07.048Suche in Google Scholar
21. S. K. Lanke, N. Sekar, Dyes Pigm. 127 (2016) 116.10.1016/j.dyepig.2015.12.026Suche in Google Scholar
22. A. Irfan, A. R. Chaudhry, S. Muhammad, A. G. Al-Sehemi, Optik 179 (2019) 526.10.1016/j.ijleo.2018.10.204Suche in Google Scholar
23. N. Wazzan, A. Irfan, Org. Electron. 63 (2018) 328.10.1016/j.orgel.2018.09.039Suche in Google Scholar
24. A. Irfan, A. Mahmood, J. Clust. Sci. 29 (2018) 359.10.1007/s10876-018-1338-xSuche in Google Scholar
25. A. Irfan, G. Abbas, Z. Naturforsch. A 73 (2018) 337.10.1515/zna-2017-0406Suche in Google Scholar
26. R. Jin, A. Irfan, RSC Advances 7 (2017) 39899.10.1039/C7RA07017ASuche in Google Scholar
27. A. Irfan, A. Mahmood, J. Mex. Chem. Soc. 61 (2017) 309.10.29356/jmcs.v61i1.118Suche in Google Scholar
28. A. Irfan, A. G. Al-Sehemi, A. R. Chaudhry, S. Muhammad, J. King Saud Univ. Sci. 30 (2018) 458.10.1016/j.jksus.2017.03.010Suche in Google Scholar
29. A. Irfan, A. Rasool Chaudhry, A. G. Al-Sehemi, M. Sultan Al-Asiri, S. Muhammad, A. Kalam, J. Saudi. Chem. Soc. 20 (2016) 336.10.1016/j.jscs.2014.09.009Suche in Google Scholar
30. A. Irfan, A. G. Al-Sehemi, A. R. Chaudhry, S. Muhammad, J. King Saud Univ. Sci. 30 (2018) 75.10.1016/j.jksus.2016.10.004Suche in Google Scholar
31. M. Adnan, J. Iqbal, S. BiBi, R. Hussain, N. Akhtar Muhammad, A. Rashid Muhammad, B. Eliasson, K. Ayub, Fine Tuning the Optoelectronic Properties of Triphenylamine Based Donor Molecules for Organic Solar Cells, in: Zeitschrift für Physikalische Chemie (2017), P. 1127.10.1515/zpch-2016-0790Suche in Google Scholar
32. K. Kumaravel, G. Vasuki, Green Chem. 11 (2009) 1945.10.1039/b913838bSuche in Google Scholar
33. A. Irfan, A. G. Al-Sehemi, S. Muhammad, A. R. Chaudhry, M. S. Al-Assiri, R. Jin, A. Kalam, M. Shkir, A. M. Asiri, CR Chim. 18 (2015) 1289.10.1016/j.crci.2015.05.020Suche in Google Scholar
34. A. Chaudhry, R. Ahmed, A. Irfan, S. Muhammad, A. Shaari, A. Al-Sehemi, J. Mol. Model. 20 (2014) 1.10.1007/s00894-014-2547-3Suche in Google Scholar PubMed
35. J. Zhang, Y.-H. Kan, H.-B. Li, Y. Geng, Y. Wu, Y.-A. Duan, Z.-M. Su, J. Mol. Model. 19 (2013) 1597.10.1007/s00894-012-1719-2Suche in Google Scholar PubMed
36. A. R. Chaudhry, R. Ahmed, A. Irfan, A. Shaari, A. R. M. Isa, S. Muhammad, A. G. Al-Sehemi, J. Mol. Model. 21 (2015) 1.10.1007/s00894-014-2561-5Suche in Google Scholar PubMed
37. A. R. Chaudhry, R. Ahmed, A. Irfan, M. Mohamad, S. Muhammad, B. Ul Haq, A. G. Al-Sehemi, Y. Al-Douri, J. Mol. Model. 22 (2016) 1.10.1007/s00894-015-2876-xSuche in Google Scholar PubMed
38. A. Irfan, A. G. Al-Sehemi, A. R. Chaudhry, S. Muhammad, A. M. Asiri, Optik 127 (2016) 10148.10.1016/j.ijleo.2016.08.007Suche in Google Scholar
39. A. Irfan, Optik 125 (2014) 4825.10.1016/j.ijleo.2014.04.050Suche in Google Scholar
40. R. S. Sánchez-Carrera, V. Coropceanu, D. A. da Silva Filho, R. Friedlein, W. Osikowicz, R. Murdey, C. Suess, W. R. Salaneck, J.-L. Brédas, J. Phys. Chem. B 110 (2006) 18904.10.1021/jp057462pSuche in Google Scholar PubMed
41. A. Irfan, A. G. Al-Sehemi, J. Saudi. Chem. Soc. 19 (2015) 318.10.1016/j.jscs.2012.03.005Suche in Google Scholar
42. R. Zhu, Y.-A. Duan, Y. Geng, C.-Y. Wei, X.-Y. Chen, Y. Liao, Comput. Theor. Chem. 1078 (2016) 16.10.1016/j.comptc.2015.12.017Suche in Google Scholar
43. D. Cvejn, S. Achelle, O. Pytela, J.-P. Malval, A. Spangenberg, N. Cabon, F. Bureš, F. Robin-le Guen, Dyes Pigm. 124 (2016) 101.10.1016/j.dyepig.2015.09.012Suche in Google Scholar
44. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.10.1103/PhysRevLett.77.3865Suche in Google Scholar PubMed
45. A. Irfan, A. Kalam, A. R. Chaudhry, A. G. Al-Sehemi, S. Muhammad, Optik 132 (2017) 101.10.1016/j.ijleo.2016.12.023Suche in Google Scholar
46. A. Irfan, A. G. Al-Sehemi, A. R. Chaudhry, S. Muhammad, Optik 138 (2017) 349.10.1016/j.ijleo.2017.03.070Suche in Google Scholar
47. M. Ernzerhof, G. E. Scuseria, J. Chem. Phys. 110 (1999) 5029.10.1063/1.478401Suche in Google Scholar
48. S. Grimme, J. Comput. Chem. 27 (2006) 1787.10.1002/jcc.20495Suche in Google Scholar PubMed
49. G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, J. Mantzaris, J. Chem. Phys. 89 (1988) 2193.10.1063/1.455064Suche in Google Scholar
50. G. A. Petersson, M. A. Al-Laham, J. Chem. Phys. 94 (1991) 6081.10.1063/1.460447Suche in Google Scholar
51. J. L. Chen, L. Noodleman, D. A. Case, D. Bashford, J. Phys. Chem. 98 (1994) 11059.10.1021/j100094a013Suche in Google Scholar
52. J.-M. Mouesca, J. L. Chen, L. Noodleman, D. Bashford, D. A. Case, J. Am. Chem. Soc. 116 (1994) 11898.10.1021/ja00105a033Suche in Google Scholar
53. S. Miertuš, E. Scrocco, J. Tomasi, Chem. Phys. 55 (1981) 117.10.1016/0301-0104(81)85090-2Suche in Google Scholar
54. C. A. Peeples, G. Schreckenbach, J. Chem. Theor. Comput. 12 (2016) 4033.10.1021/acs.jctc.6b00410Suche in Google Scholar
55. A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Chem. Theor. Comput. 9 (2013) 609.10.1021/ct300900eSuche in Google Scholar
56. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian-09, Revision A.1, Gaussian, Inc., Wallingford, CT (2009).Suche in Google Scholar
57. R. L. Martin, J. Chem. Phys. 118 (2003) 4775.10.1063/1.1558471Suche in Google Scholar
58. P. Politzer, D. G. Truhlar (Eds.): Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum Press, New York (1981).10.1007/978-1-4757-9634-6Suche in Google Scholar
59. R. F. Stewart, Chem. Phys. Lett. 65 (1979) 335.10.1016/0009-2614(79)87077-3Suche in Google Scholar
60. J. S. Murray, P. Politzer, Wiley Interdiscip. Rev. Comput. Mol. Sci. 1 (2011) 153.10.1002/wcms.19Suche in Google Scholar
61. S. Rasool, V. Van Doan, H. K. Lee, S. K. Lee, J.-C. Lee, S.-J. Moon, W. W. So, C. E. Song, W. S. Shin, Thin Solid Films 669 (2019) 42.10.1016/j.tsf.2018.09.040Suche in Google Scholar
62. V. Kozlov Oleg, R. Singh, B. Ai, J. Zhang, C. Liu, I. Klimov Victor, Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping, in: Zeitschrift für Physikalische Chemie (2018), P. 1495.10.1515/zpch-2018-1168Suche in Google Scholar
63. A. Irfan, J. Zhang, Y. Chang, Theoretical Chemistry Accounts 127 (2010) 587.10.1007/s00214-010-0752-4Suche in Google Scholar
64. A. Irfan, J. Zhang, Theoretical Chemistry Accounts 124 (2009) 339.10.1007/s00214-009-0616-ySuche in Google Scholar
65. A. R. Chaudhry, R. Ahmed, A. Irfan, A. Shaari, A. G. Al-Sehemi, Sci. Adv. Mater. 6 (2014) 1727.10.1166/sam.2014.1916Suche in Google Scholar
66. A. Irfan, R. Cui, J. Zhang, M. Nadeem, Aust. J. Chem. 63 (2010) 1283.10.1071/CH09491Suche in Google Scholar
67. A. R. Chaudhry, R. Ahmed, A. Irfan, S. Muhammad, A. Shaari, A. G. Al-Sehemi, RSC Adv. 4 (2014) 48876.10.1039/C4RA05850JSuche in Google Scholar
68. H. B. Michaelson, J. App. Phys. 48 (1977) 4729.10.1063/1.323539Suche in Google Scholar
69. H. Pan, Renew. Sustain. Energy Rev. 57 (2016) 584.10.1016/j.rser.2015.12.117Suche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- 1-(2-Aminoethyl)-1-dodecyl-2-undecyl-4,5-dihydro-1H-imidazol-1-ium chloride, 1-(2-Aminoethyl)-1-dodecyl-2-tridecyl-4,5-dihydro-1H-imidazol-1-ium chloride as Corrosion Inhibitors for Carbon Steel in Oil Wells Formation Water
- Inhibition of Steel Corrosion in Sulfuric Acid Solution by 1,10-Phenanthroline, para-Aminobenzoate and their Corresponding Manganese Complex
- New Star Shape Tetra-Cationic Surfactant Synthesis and Evaluation as Corrosion Inhibitor for Carbon Steel in Different Acidic Media
- A Novel Approach for Modification of Biosorbent by Silane Functionalization and its Industrial Application for Single and Multi-Component Solute System
- Exploring the Effect of Electron Withdrawing Groups on Optoelectronic Properties of Pyrazole Derivatives as Efficient Donor and Acceptor Materials for Photovoltaic Devices
- 4-Acetamidophenol Binding Mechanism with DNA by UV-Vis and FTIR Techniques Based on Binding Energy, LUMO and HOMO Orbitals and Geometry of Molecule
- Growth, Vibrational, Optical, Mechanical and DFT Investigations of an Organic Nonlinear Optical Material – Phenylurea
Artikel in diesem Heft
- Frontmatter
- 1-(2-Aminoethyl)-1-dodecyl-2-undecyl-4,5-dihydro-1H-imidazol-1-ium chloride, 1-(2-Aminoethyl)-1-dodecyl-2-tridecyl-4,5-dihydro-1H-imidazol-1-ium chloride as Corrosion Inhibitors for Carbon Steel in Oil Wells Formation Water
- Inhibition of Steel Corrosion in Sulfuric Acid Solution by 1,10-Phenanthroline, para-Aminobenzoate and their Corresponding Manganese Complex
- New Star Shape Tetra-Cationic Surfactant Synthesis and Evaluation as Corrosion Inhibitor for Carbon Steel in Different Acidic Media
- A Novel Approach for Modification of Biosorbent by Silane Functionalization and its Industrial Application for Single and Multi-Component Solute System
- Exploring the Effect of Electron Withdrawing Groups on Optoelectronic Properties of Pyrazole Derivatives as Efficient Donor and Acceptor Materials for Photovoltaic Devices
- 4-Acetamidophenol Binding Mechanism with DNA by UV-Vis and FTIR Techniques Based on Binding Energy, LUMO and HOMO Orbitals and Geometry of Molecule
- Growth, Vibrational, Optical, Mechanical and DFT Investigations of an Organic Nonlinear Optical Material – Phenylurea