A Novel Approach for Modification of Biosorbent by Silane Functionalization and its Industrial Application for Single and Multi-Component Solute System
-
Numrah Nisar
, Omamah Ali , Atif Islam , Aftab Ahmad , Muhammd Yameen , Abdul Ghaffar, Munawar Iqbal
, Arif Nazirand Nasir Masood
Abstract
The potential of an economically cheap raw material (rice husk) was evaluated in the present study to remove dyes including reactive yellow 15 (RY15) and reactive red 241 (RR241) in single and multi-component systems. The adsorbent was modified and functionalized chemically using glycidoxypropyltrimethoxysilane, sulfur and silane to enhance the removal efficiency of pollutants. The modified rice husk was evaluated by scanning electron microscope (SEM) and Fourier transform Infrared Spectroscopy (FTIR). Batch adsorption study showed that the modified rice husk with silane graft (RHSi) had highest removal efficiency of both dyes with 20% more removal compared to raw rice husk. The sorption correlated well with Langmuir, Freundlich, SIPS and Redlich-Peterson models for adsorption. Highest sorption was obtained at 10 mg L−1 of dye, 50 °C, 200 mg g−1 of adsorbent dose and pH 4. The mixture of two dyes poorly fit to the original Langmuir but fit best to the Langmuir-like model. This indicates that competitive Langmuir-like model considers that the capacities of adsorbents are equal. Results showed that the components compete for the available binding sites on adsorbent surface. It was also indicated that silane grafting can offer comparatively more binding sites compared to the raw rice husk and single-solute isotherm parameters cannot used for multi-component solute system.
Nomenclature
- A
Cross sectional area (cm2)
- A
Clark model parameter
- aR
Redlich-Peterson model parameter (L μg−1)
- b
Constant in SIPS model (L mg−1)
- b
Langmuir model constant (L mg−1)
- CB
Effluent concentration at breakthrough point (mg L−1)
- Ce
Equilibrium dye concentration in solution (mg L−1)
- Ci
Initial dye concentration in solution (mg L−1)
- D
Mutual diffusion coefficient
- Do
Intra-diffusion coefficient of solute
- F
Linear flow rate (cm h−1)
- Ka
Sorption rate constant in BDST model (L mg−1 h−1)
- k1
Lagergren model constant (min−1)
- k2
Rate constant of the second-order equation (g mg−1 min−1)
- KF
Freundlich constant (L g−1)
- KR
Redlich-Peterson model parameter (L mg−1)
- kTH
Thomas model rate constant (mL min−1 ⋅ mg−1)
- n
Dimensionless parameter in Freundlich model
- NO
Sorption capacity in BDST model (mg L−1)
- Q
Volumetric flow rate (mL min−1)
- qo
Sorption capacity in Thomas model (mg g−1 of biomass)
- q′max
Maximum sorption capacity in SIPS model (mg g−1)
- qB
Sorption capacity in BET model (μg g−1)
- qe
Equilibrium sorption capacity (mg g−1)
- qmax
Maximum sorption capacity (mg g−1)
- qt
Adsorption capacity after time (t) (mg g−1)
- qtotal
Total amount of metal ions loaded into the column (mg L−1)
- r
Clark model parameter (min−1)
- R2
Determination coefficient
- ttotal
Total time (min)
- V
Volume of adsorbate solution (L)
- Veff
Total volume of the effluent (mL)
- W
Weight of biosorbent used (gram)
- X
Amount of solute at equilibrium (mg)
- X1
Amount of solute 1 (mg)
- X2
Amount of solute 2 (mg)
- Z
Bed depth of the column (cm)
- ZO
Critical bed depth (cm)
- θ
Fraction of the surface
References
1. M. Hasan, A. Ahmad, B. Hameed, Chem. Eng. J. 136 (2008) 164.10.1016/j.cej.2007.03.038Search in Google Scholar
2. W. Konicki, D. Sibera, E. Mijowska, Z. Lendzion-Bieluń, U. Narkiewicz, J. Colloid Interfac. Sci. 398 (2013) 152.10.1016/j.jcis.2013.02.021Search in Google Scholar PubMed
3. A. Ahmad, B. Hameed, J. Hazard. Mater. 175 (2010) 298.10.1016/j.jhazmat.2009.10.003Search in Google Scholar PubMed
4. N. Dizge, C. Aydiner, E. Demirbas, M. Kobya, S. Kara, J. Hazard. Mater. 150 (2008) 737.10.1016/j.jhazmat.2007.05.027Search in Google Scholar PubMed
5. N. K. Amin, Desalination 223 (2008) 152.10.1016/j.desal.2007.01.203Search in Google Scholar
6. H.-D. Choi, M.-C. Shin, D.-H. Kim, C.-S. Jeon, K. Baek, Desalination 223 (2008) 290.10.1016/j.desal.2007.01.224Search in Google Scholar
7. S. Wang, Y. Boyjoo, A. Choueib, Chemosphere 60 (2005) 1401.10.1016/j.chemosphere.2005.01.091Search in Google Scholar PubMed
8. K. Vijayaraghavan, S. W. Won, Y.-S. Yun, J. Hazard. Mater. 167 (2009) 790.10.1016/j.jhazmat.2009.01.055Search in Google Scholar PubMed
9. J. Navas, F. Reyes-Pérez, R. Alcántara, C. Fernández-Lorenzo, J. J. G. Bernal, J. Martín-Calleja, Z. Phys. Chem. 232 (2018) 559.10.1515/zpch-2017-1002Search in Google Scholar
10. M. Saeed, M. Siddique, M. Usman, A. ul Haq, S. G. Khan, H. A. Raoof, Z. Phys. Chem. 231 (2017) 1559.10.1515/zpch-2016-0921Search in Google Scholar
11. J. Khan, M. Sayed, F. Ali, H. M. Khan, Z. Phys. Chem. 232 (2018) 507.10.1515/zpch-2017-1072Search in Google Scholar
12. F. Rehman, M. Sayed, J. A. Khan, L. A. Shah, N. S. Shah, H. M. Khan, R. Khattak, Z. Phys. Chem. 232 (2018) 1771.10.1515/zpch-2017-1099Search in Google Scholar
13. N. Khan, H. N. Bhatti, M. Iqbal, A. Nazir, Z. Phys. Chem. 233 (2019) 361.10.1515/zpch-2018-1194Search in Google Scholar
14. V. Garg, R. Kumar, R. Gupta, Dyes Pigment. 62 (2004) 1.10.1016/j.dyepig.2003.10.016Search in Google Scholar
15. M. Elkady, A. M. Ibrahim, M. A. El-Latif, Desalination 278 (2011) 412.10.1016/j.desal.2011.05.063Search in Google Scholar
16. D. Krishnaiah, S. Anisuzzaman, A. Bono, R. Sarbatly, J. King Saud Univ. Sci. 25 (2013) 251.10.1016/j.jksus.2012.10.001Search in Google Scholar
17. L. Monser, N. Adhoum, Separat. Purificat. Technol. 26 (2002) 137.10.1016/S1383-5866(01)00155-1Search in Google Scholar
18. A. Ip, J. Barford, G. McKay, J. Colloid Interfac. Sci. 337 (2009) 32.10.1016/j.jcis.2009.05.015Search in Google Scholar PubMed
19. V. Gupta, J. Environ. Manage. 90 (2009) 2313.10.1016/j.jenvman.2008.11.017Search in Google Scholar PubMed
20. B. H. Hameed, J. Hazard. Mater. 161 (2009) 753.10.1016/j.jhazmat.2008.04.019Search in Google Scholar PubMed
21. M. Ş. Tanyildizi, Chem. Eng. J. 168 (2011) 1234.10.1016/j.cej.2011.02.021Search in Google Scholar
22. V. Ponnusami, V. Krithika, R. Madhuram, S. Srivastava, J. Hazard. Mater. 142 (2007) 397.10.1016/j.jhazmat.2006.08.040Search in Google Scholar PubMed
23. J. S. Jain, V. L. Snoeyink, J. Water Pollut. Cont. Federat. 45 (1973) 2463.Search in Google Scholar
24. G. Annadurai, R.-S. Juang, D.-J. Lee, J. Hazard. Mater. 92 (2002) 263.10.1016/S0304-3894(02)00017-1Search in Google Scholar PubMed
25. B. Dai, F. Polzer, I. Häusler, Y. Lu, Z. Phys. Chem. 226 (2012) 827.10.1524/zpch.2012.0262Search in Google Scholar
26. T. Robinson, B. Chandran, P. Nigam, Environ. Int. 28 (2002) 29.10.1016/S0160-4120(01)00131-3Search in Google Scholar PubMed
27. H. Momenzadeh, A. R. Tehrani-Bagha, A. Khosravi, K. Gharanjig, K. Holmberg, Desalination 271 (2011) 225.10.1016/j.desal.2010.12.036Search in Google Scholar
28. H. Xu, Y. Zhang, Q. Jiang, N. Reddy, Y. Yang, J. Environ. Manage. 125 (2013) 33.10.1016/j.jenvman.2013.03.050Search in Google Scholar PubMed
29. K. Ramesh, A. Rajappa, V. Nandhakumar, Z. Phys. Chem. 231 (2017) 1057.10.1515/zpch-2016-0868Search in Google Scholar
30. M. Ullah, L. A. Shah, M. Sayed, M. Siddiq, N. U. Amin, Z. Phys. Chem. 233 (2019) 289.10.1515/zpch-2017-1068Search in Google Scholar
31. A. Malik, A. Khan, M. Humayun, Z. Phys. Chem. 233 (2019) 375.10.1515/zpch-2018-1190Search in Google Scholar
32. K. Kanimozhi, P. Prabunathan, V. Selvaraj, M. Alagar, RSC Adv. 4 (2014) 18157.10.1039/C4RA01125BSearch in Google Scholar
33. S. Anisuzzaman, C. G. Joseph, Y. Taufiq-Yap, D. Krishnaiah, V. Tay, J. King Saud Univ. Sci. 27 (2015) 318.10.1016/j.jksus.2015.01.002Search in Google Scholar
34. A. K. Panda, V. R. B. Sastry, A. Kumar, S. K. Saha, Asian-Aust. J. Anim. Sci. 19 (2006) 1776.10.5713/ajas.2006.1776Search in Google Scholar
35. H. Song, W. Lin, Y. Lin, A. B. Wolf, R. Neggers, L. J. Donner, A. D. Del Genio, Y. Liu, J. Climat. 26 (2013) 5467.10.1175/JCLI-D-12-00263.1Search in Google Scholar
36. R. K. Mall, A. Gupta, R. Singh, R. S. Singh, L. S. Rathore, Curr. Sci. 90 (2006) 1610.Search in Google Scholar
37. K. Pakshirajan, A. N. Worku, M. A. Acheampong, H. J. Lubberding, P. N. Lens, Appl. Biochem. Biotechnol. 170 (2013) 498.10.1007/s12010-013-0202-6Search in Google Scholar PubMed
38. Y.-S. Ho, Pol. J. Environ. Stud. 15 (2006) 81.10.1002/tqem.20095Search in Google Scholar
39. E. Markham, A. F. Benton, J. Am. Chem. Soc. 53 (1931) 497.10.1021/ja01353a013Search in Google Scholar
40. M. Rio, A. V. Parwate, A. G. Bhole, Waste Manage. 22 (2002) 821.10.1016/S0956-053X(02)00011-9Search in Google Scholar
41. Z. Lopičić, M. Stojanović, C. Lačnjevac, J. Milojković, M. Mihajlović, T. Šoštarić, Zaš. Mater. 52 (2011) 189.Search in Google Scholar
42. E. El-Shafey, J. Hazard. Mater. 175 (2010) 319.10.1016/j.jhazmat.2009.10.006Search in Google Scholar PubMed
43. N. Bheel, S. L. Meghwar, S. A. Abbasi, L. C. Marwari, J. A. Mugeri, R. A. Abbasi, Civil Eng. J. 4 (2018) 2373.10.28991/cej-03091166Search in Google Scholar
44. X. M. Santa Cruz, V. Sfara, Emerg. Sci. J. 2 (2018) 261.10.28991/esj-2018-01150Search in Google Scholar
45. B. M. S. Al-Ahdal, L. B. Xiong, R. F. Tufail, Civil Eng. J. 4 (2018) 1019.10.28991/cej-0309153Search in Google Scholar
46. C. R. Teixeira Tarley, M. A. Zezzi Arruda, Chemosphere 54 (2004) 987.10.1016/j.chemosphere.2003.09.001Search in Google Scholar PubMed
47. X. Luo, Z. Deng, X. Lin, C. Zhang, J. Hazard. Mater. 187 (2011) 182.10.1016/j.jhazmat.2011.01.019Search in Google Scholar PubMed
48. Y. Safa, H. N. Bhatti, Chem. Eng. Res. Design. 89 (2011) 2566.10.1016/j.cherd.2011.06.003Search in Google Scholar
49. A. Meshkat, M. J. Vaezi, A. A. Babaluo, Emerg. Sci. J. 2 (2018) 53.10.28991/esj-2018-01127Search in Google Scholar
50. S. Sasui, W. Jinwuth, S. Hengrasmee, Civil Eng. J. 4 (2018) 732.10.28991/cej-0309128Search in Google Scholar
51. N. Bheel, S. L. Meghwar, S. Sohu, A. R. Khoso, A. Kumar, Z. H. Shaikh, Civil Eng. J. 4 (2018) 2305.10.28991/cej-03091160Search in Google Scholar
52. N. E. Ibisi, C. A. Asoluka, Chem. Int. 4 (2018) 52.Search in Google Scholar
53. S. Jafarinejad, Chem. Int. 3 (2017) 268.Search in Google Scholar
54. K. Legrouri, E. Khouya, H. Hannache, M. El Hartti, M. Ezzine, R. Naslain, Chem. Int. 3 (2017) 301.Search in Google Scholar
55. W. Dagnaw, A. Mekonnen, Chem. Int. 3 (2017) 251.Search in Google Scholar
56. M. Greluk, Z. Hubicki, Chem. Eng. Res. Design. 91 (2013) 1343.10.1016/j.cherd.2013.01.019Search in Google Scholar
57. M. Sulak, E. Demirbas, M. Kobya, Bioresour. Tech. 98 (2007) 2590.10.1016/j.biortech.2006.09.010Search in Google Scholar PubMed
58. A. Cahyana, N. Kam, Chem. Int. 3 (2017) 203.10.25105/prio.v6i2.2440Search in Google Scholar
59. A. A. Hamid, S. O. Oguntoye, S. O. Alli, G. A. Akomolafe, A. Aderinto, A. Otitigbe, A. M. Ogundare, Q. M. Esinniobiwa, R. O. Aminu, Chem. Int. 2 (2016) 254.Search in Google Scholar
60. O. U. Igwe, C. Friday, Chem. Int. 3 (2017) 286.Search in Google Scholar
61. M. Abbas, M. Arshad, N. Nisar, J. Nisar, A. Ghaffar, A. Nazir, M. A. Tahir, M. Iqbal, J. Photochem. Photobiol. B. 173 (2017) 344.10.1016/j.jphotobiol.2017.06.012Search in Google Scholar PubMed
62. A. Munir, B. Sultana, A. Bashir, A. Ghaffar, B. Munir, G. A. Shar, A. Nazir, M. Iqbal, Pol. J. Environ. Stud. 27 (2018) 947.10.15244/pjoes/69944Search in Google Scholar
63. M. B. Burke, D. B. Lobell, L. Guarino, Glob. Environ. Chang. 19 (2009) 317.10.1016/j.gloenvcha.2009.04.003Search in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- 1-(2-Aminoethyl)-1-dodecyl-2-undecyl-4,5-dihydro-1H-imidazol-1-ium chloride, 1-(2-Aminoethyl)-1-dodecyl-2-tridecyl-4,5-dihydro-1H-imidazol-1-ium chloride as Corrosion Inhibitors for Carbon Steel in Oil Wells Formation Water
- Inhibition of Steel Corrosion in Sulfuric Acid Solution by 1,10-Phenanthroline, para-Aminobenzoate and their Corresponding Manganese Complex
- New Star Shape Tetra-Cationic Surfactant Synthesis and Evaluation as Corrosion Inhibitor for Carbon Steel in Different Acidic Media
- A Novel Approach for Modification of Biosorbent by Silane Functionalization and its Industrial Application for Single and Multi-Component Solute System
- Exploring the Effect of Electron Withdrawing Groups on Optoelectronic Properties of Pyrazole Derivatives as Efficient Donor and Acceptor Materials for Photovoltaic Devices
- 4-Acetamidophenol Binding Mechanism with DNA by UV-Vis and FTIR Techniques Based on Binding Energy, LUMO and HOMO Orbitals and Geometry of Molecule
- Growth, Vibrational, Optical, Mechanical and DFT Investigations of an Organic Nonlinear Optical Material – Phenylurea
Articles in the same Issue
- Frontmatter
- 1-(2-Aminoethyl)-1-dodecyl-2-undecyl-4,5-dihydro-1H-imidazol-1-ium chloride, 1-(2-Aminoethyl)-1-dodecyl-2-tridecyl-4,5-dihydro-1H-imidazol-1-ium chloride as Corrosion Inhibitors for Carbon Steel in Oil Wells Formation Water
- Inhibition of Steel Corrosion in Sulfuric Acid Solution by 1,10-Phenanthroline, para-Aminobenzoate and their Corresponding Manganese Complex
- New Star Shape Tetra-Cationic Surfactant Synthesis and Evaluation as Corrosion Inhibitor for Carbon Steel in Different Acidic Media
- A Novel Approach for Modification of Biosorbent by Silane Functionalization and its Industrial Application for Single and Multi-Component Solute System
- Exploring the Effect of Electron Withdrawing Groups on Optoelectronic Properties of Pyrazole Derivatives as Efficient Donor and Acceptor Materials for Photovoltaic Devices
- 4-Acetamidophenol Binding Mechanism with DNA by UV-Vis and FTIR Techniques Based on Binding Energy, LUMO and HOMO Orbitals and Geometry of Molecule
- Growth, Vibrational, Optical, Mechanical and DFT Investigations of an Organic Nonlinear Optical Material – Phenylurea