Home Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
Article
Licensed
Unlicensed Requires Authentication

Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems

  • Christoph Haisch , Barbara N. Nunes , Jenny Schneider , Detlef Bahnemann and Antonio Otavio T. Patrocinio EMAIL logo
Published/Copyright: June 16, 2018

Abstract

Being part of the development of environmentally clean and safe sustainable technologies photocatalysis is attracting increasing attention. During the last decade, great attention has been paid to the synthesis of different photocatalysts possessing high photocatalytic activity, whereas fundamental studies concerning the underlying photocatalytic processes have rarely been executed. The knowledge of these processes is, however, of utmost importance for the understanding of the reaction mechanism and thus for a better design of photocatalytic systems. The transient absorption spectroscopy (TAS) is one widely used method to study such fundamental processes. The present review paper focuses on the application of TAS in the UV-Vis-IR regions to investigate the charge carrier dynamics in ultrafast and nano-to-millisecond time regime. Hereby, the photo induced processes occurring in different materials will be discussed. Moreover, further attention is also paid to nanocomposite-based systems, in which different materials are used concomitantly to promote more efficient photocatalytic processes.

Acknowledgments

This work was supported by Fundacão de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the german Federal Ministry of Education and Research (BMBF). A.O.T.P. is also thankful to Alexander von Humboldt Foundation for the fellowship in Germany.

References

1. K. W. Guo, Int. J. Energy Res. 36 (2012) 1.10.1002/er.1928Search in Google Scholar

2. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Adv. Mater. 24 (2012) 229.10.1002/adma.201102752Search in Google Scholar PubMed

3. X. Li, J. Yu, M. Jaroniec, Chem. Soc. Rev. 45 (2016) 2603.10.1039/C5CS00838GSearch in Google Scholar PubMed

4. R. G. W. Norrish, G. Porter, Nature 164 (1949) 658.10.1038/164658a0Search in Google Scholar

5. M. Eigen, Discuss. Faraday Soc. 17 (1954) 194.10.1039/DF9541700194Search in Google Scholar

6. G. Porter, Proc. R. Soc. A Math. Phys. Eng. Sci. 200 (1950) 284.10.1098/rspa.1950.0018Search in Google Scholar

7. M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 95 (1995) 69.10.1021/cr00033a004Search in Google Scholar

8. N. Serpone, D. Lawless, R. Khairutdinov, E. Pelizzetti, J. Phys. Chem. 99 (1995) 16655.10.1021/j100045a027Search in Google Scholar

9. D. Bahnemann, A. Henglein, J. Lilie, L. Spanhel, J. Phys. Chem. 88 (1984) 709.10.1021/j150648a018Search in Google Scholar

10. M. Grätzel, A. J. Frank, J. Phys. Chem. 86 (1982) 2964.10.1021/j100212a031Search in Google Scholar

11. I. A. Shkrob, M. C. Sauer, J. Phys. Chem. B 108 (2004) 12497.10.1021/jp047736tSearch in Google Scholar

12. S. A. Haque, Y. Tachibana, R. L. Willis, J. E. Moser, M. Grätzel, D. R. Klug, J. R. Durrant, J. Phys. Chem. B 104 (2000) 538.10.1021/jp991085xSearch in Google Scholar

13. T. Yoshihara, R. Katoh, A. Furube, Y. Tamaki, M. Murai, K. Hara, S. Murata, H. Arakawa, M. Tachiya, J. Phys. Chem. B 108 (2004) 3817.10.1021/jp031305dSearch in Google Scholar

14. T. Yoshihara, Y. Tamaki, A. Furube, M. Murai, K. Hara, R. Katoh, Chem. Phys. Lett. 438 (2007) 268.10.1016/j.cplett.2007.03.017Search in Google Scholar

15. Y. Tamaki, A. Furube, R. Katoh, M. Murai, K. Hara, H. Arakawa, M. Tachiya, Comptes Rendus Chim. 9 (2006) 268.10.1016/j.crci.2005.05.018Search in Google Scholar

16. Y. Tamaki, K. Hara, R. Katoh, M. Tachiya, A. Furube, J. Phys. Chem. C 113 (2009) 11741.10.1021/jp901833jSearch in Google Scholar

17. C. J. Willsher, J. Photochem. 28 (1985) 229.10.1016/0047-2670(85)87034-9Search in Google Scholar

18. R. W. Kessler, G. Krabichler, S. Uhl, D. Oelkrug, W. P. Hagan, J. Hyslop, F. Wilkinson, Opt. Acta (Lond). 30 (1983) 1099.10.1080/713821340Search in Google Scholar

19. A. Yamakata, J. J. M. Vequizo, H. Matsunaga, J. Phys. Chem. C 119 (2015) 24538.10.1021/acs.jpcc.5b09236Search in Google Scholar

20. A. Kafizas, X. Wang, S. R. Pendlebury, P. Barnes, M. Ling, C. Sotelo-Vazquez, R. Quesada-Cabrera, C. Li, I. P. Parkin, J. R. Durrant, J. Phys. Chem. A 120 (2016) 715.10.1021/acs.jpca.5b11567Search in Google Scholar PubMed

21. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann, Chem. Rev. 114 (2014) 9919.10.1021/cr5001892Search in Google Scholar PubMed

22. X. Yang, N. Tamai, Phys. Chem. Chem. Phys. 3 (2001) 3393.10.1039/b101721gSearch in Google Scholar

23. Y. Tamaki, A. Furube, M. Murai, K. Hara, R. Katoh, M. Tachiya, Phys. Chem. Chem. Phys. 9 (2007) 1453.10.1039/B617552JSearch in Google Scholar PubMed

24. D. E. Skinner, D. P. Colombo, J. J. Cavaleri, R. M. Bowman, J. Phys. Chem. 99 (1995) 7853.10.1021/j100020a003Search in Google Scholar

25. J. J. M. Vequizo, H. Matsunaga, T. Ishiku, S. Kamimura, T. Ohno, A. Yamakata, ACS Catal. 7 (2017) 2644.10.1021/acscatal.7b00131Search in Google Scholar

26. M. Sachs, E. Pastor, A. Kafizas, J. R. Durrant, J. Phys. Chem. Lett. 7 (2016) 3742.10.1021/acs.jpclett.6b01501Search in Google Scholar PubMed PubMed Central

27. P. V. Kamat, T. W. Ebbesen, N. M. Dimitrijević, A. J. Nozik, Chem. Phys. Lett. 157 (1989) 384.10.1016/0009-2614(89)87267-7Search in Google Scholar

28. N. Serpone, M. A. Jamieson, J. Ramsden, Phys. Lett. 115 (1985) 473.10.1016/0009-2614(85)85173-3Search in Google Scholar

29. Y. Nosaka, H. Miyama, M. Terauchi, T. Kobayashi, J. Phys. Chem. 255 (1988) 6521.10.1021/j100313a003Search in Google Scholar

30. S. D. Tilley, M. Cornuz, K. Sivula, M. Grätzel, Angew. Chemie – Int. Ed. 49 (2010) 6405.10.1002/anie.201003110Search in Google Scholar PubMed

31. K. Sivula, F. Le Formal, M. Grätzel, ChemSusChem. 4 (2011) 432.10.1002/cssc.201000416Search in Google Scholar PubMed

32. Z. Huang, Y. Lin, X. Xiang, W. Rodríguez-Córdoba, K. J. McDonald, K. S. Hagen, K.-S. Choi, B. S. Brunschwig, D. G. Musaev, C. L. Hill, Energy Environ. Sci. 5 (2012) 8923.10.1039/c2ee22681bSearch in Google Scholar

33. D. K. Bora, A. Braun, E. C. Constable, Energy Environ. Sci. 6 (2013) 407.10.1039/C2EE23668KSearch in Google Scholar

34. P. Saurabh Bassi, L. Helena Wong, J. Barber, Phys. Chem. Chem. Phys. 16 (2014) 11834.10.1039/c3cp55174aSearch in Google Scholar PubMed

35. N. J. Cherepy, D. B. Liston, J. A. Lovejoy, H. Deng, J. Z. Zhang, J. Phys. Chem. B 102 (1998) 770.10.1021/jp973149eSearch in Google Scholar

36. B. C. Fitzmorris, J. M. Patete, J. Smith, X. Mascorro, S. Adams, S. S. Wong, J. Z. Zhang, ChemSusChem. 6 (2013) 1907.10.1002/cssc.201300571Search in Google Scholar PubMed

37. Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, Y. Li, Nano Lett. 11 (2011) 2119.10.1021/nl200708ySearch in Google Scholar PubMed

38. T. P. Ruoko, K. Kaunisto, M. Bärtsch, J. Pohjola, A. Hiltunen, M. Niederberger, N. V. Tkachenko, H. Lemmetyinen, J. Phys. Chem. Lett. 6 (2015) 2859.10.1021/acs.jpclett.5b01128Search in Google Scholar PubMed

39. S. R. Pendlebury, X. Wang, F. Le Formal, M. Cornuz, A. Kafizas, S. D. Tilley, M. Grätzel, J. R. Durrant, J. Am. Chem. Soc. 136 (2014) 9854.10.1021/ja504473eSearch in Google Scholar PubMed PubMed Central

40. H. Zhang, Y. Chen, R. Lu, R. Li, A. Yu, Phys. Chem. Chem. Phys. 18 (2016) 14904.10.1039/C6CP01600FSearch in Google Scholar

41. J. D. Xiao, Q. Shang, Y. Xiong, Q. Zhang, Y. Luo, S. H. Yu, H. L. Jiang, Angew. Chemie – Int. Ed. 55 (2016) 9389.10.1002/anie.201603990Search in Google Scholar PubMed

42. Z. J. Jiang, D. F. Kelley, J. Phys. Chem. C 115 (2011) 4594.10.1021/jp112424zSearch in Google Scholar

43. E. Khon, A. Mereshchenko, A. N. Tarnovsky, K. Acharya, A. Klinkova, N. N. Hewa-Kasakarage, I. Nemitz, M. Zamkov, Nano Lett. 11 (2011) 1792.10.1021/nl200409xSearch in Google Scholar PubMed

44. E. Conca, M. Aresti, M. Saba, M. F. Casula, F. Quochi, G. Mula, D. Loche, M. R. Kim, L. Manna, A. Corrias, Nanoscale 6 (2014) 2238.10.1039/C3NR05567ASearch in Google Scholar PubMed

45. K. Wu, Q. Li, Y. Jia, J. R. McBride, Z. X. Xie, T. Lian, ACS Nano 9 (2015) 961.10.1021/nn506796mSearch in Google Scholar PubMed

46. W. D. Kim, J. H. Kim, S. Lee, S. Lee, J. Y. Woo, K. Lee, W. S. Chae, S. Jeong, W. K. Bae, J. A. McGuire, Chem. Mater. 28 (2016) 962.10.1021/acs.chemmater.5b04790Search in Google Scholar

47. W. Li, J. R. Lee, F. Jäckel, ACS Appl. Mater. Interfaces 8 (2016) 29434.10.1021/acsami.6b09364Search in Google Scholar PubMed

48. P. Rukenstein, A. Teitelboim, M. Volokh, M. Diab, D. Oron, T. Mokari, J. Phys. Chem. C 120 (2016) 15453.10.1021/acs.jpcc.6b04151Search in Google Scholar

49. I. Grigioni, K. G. Stamplecoskie, E. Selli, P. V. Kamat, J. Phys. Chem. C 119 (2015) 20792.10.1021/acs.jpcc.5b05128Search in Google Scholar

50. F. Meng, J. Li, S. K. Cushing, J. Bright, M. Zhi, J. D. Rowley, Z. Hong, A. Manivannan, A. D. Bristow, N. Wu, ACS Catal. 3 (2013) 746.10.1021/cs300740eSearch in Google Scholar

51. J. Huang, Q. Shang, Y. Huang, F. Tang, Q. Zhang, Q. Liu, S. Jiang, F. Hu, W. Liu, Y. Luo, Angew. Chemie – Int. Ed. 55 (2016) 2137.10.1002/anie.201510642Search in Google Scholar PubMed

52. A. Furube, T. Shiozawa, A. Ishikawa, A. Wada, Chem. Phys. 285 (2002) 31.10.1016/S0301-0104(02)00686-9Search in Google Scholar

53. O. C. Compton, E. C. Carroll, J. Y. Kim, D. S. Larsen, F. E. Osterloh, J. Phys. Chem. C 111 (2007) 14589.10.1021/jp0751155Search in Google Scholar

54. Y. Zhao, P. Chen, B. Zhang, D. S. Su, S. Zhang, L. Tian, J. Lu, Z. Li, X. Cao, B. Wang, Chem. – A Eur. J. 18 (2012) 11949.10.1002/chem.201201065Search in Google Scholar PubMed

55. A. M. Peiró, C. Colombo, G. Doyle, J. Nelson, A. Mills, J. R. Durrant, J. Phys. Chem. B 110 (2006) 23255.10.1021/jp064591cSearch in Google Scholar PubMed

56. A. Yamakata, T. Ishibashi, K. Takeshita, H. Onishi, Top. Catal. 35 (2005) 211.10.1007/s11244-005-3826-0Search in Google Scholar

57. P. Salvador, J. Phys. Chem. C 111 (2007) 17038.10.1021/jp074451iSearch in Google Scholar

58. A. Imanishi, K. T. Okamura, N. Ohashi, R. Nakamura, Y. Nakato, J. Amer. Chem. Soc. 129 (2007) 11569.10.1021/ja073206+Search in Google Scholar PubMed

59. D. W. Bahnemann, M. Hilgendorff, R. Memming, J. Phys. Chem. B 101 (1997) 4265.10.1021/jp9639915Search in Google Scholar

60. A. J. Cowan, J. Tang, W. Leng, J. R. Durrant, D. R. Klug, J. Phys. Chem. C 114 (2010) 4208.10.1021/jp909993wSearch in Google Scholar

61. R. T. Williams, K. B. Ucer, G. Xiong, H. M. Yochum, L. G. Grigorjeva, D. K. Millers, G. Corradi, Radiat. Eff. Defects Solids 155 (2001) 265.10.1080/10420150108214125Search in Google Scholar

62. S. H. Szczepankiewicz, J. A. Moss, M. R. Hoffmann, J. Phys. Chem. B 106 (2002) 2922.10.1021/jp004244hSearch in Google Scholar

63. A. J. Cowan, W. Leng, P. R. F. Barnes, D. R. Klug, J. R. Durrant, Phys. Chem. Chem. Phys. 15 (2013) 8772.10.1039/c3cp50318fSearch in Google Scholar PubMed

64. N. C. Arbour, D. K. Sharma, C. H. Langford, J. Phys. Chem. 94 (1990) 331.10.1021/j100364a056Search in Google Scholar

65. R. Katoh, A. Furube, K. I. Yamanaka, T. Morikawa, J. Phys. Chem. Lett. 1 (2010) 3261.10.1021/jz1011548Search in Google Scholar

66. J. Tang, A. J. Cowan, J. R. Durrant, D. R. Klug, J. Phys. Chem. C 115 (2011) 3143.10.1021/jp1080093Search in Google Scholar

67. L. Jing, J. Zhou, J. R. Durrant, J. Tang, D. Liu, H. Fu, Energy Environ. Sci. 5 (2012) 6552.10.1039/c2ee03383fSearch in Google Scholar

68. T. Tachikawa, S. Tojo, K. Kawai, M. Endo, M. Fujitsuka, T. Ohno, K. Nishijima, Z. Miyamoto, T. Majima, J. Phys. Chem. B 108 (2004) 19299.10.1021/jp0470593Search in Google Scholar

69. Y. Murakami, J. Nishino, T. Mesaki, Y. Nosaka, Lett. 44 (2011) 88.10.1080/00387011003699683Search in Google Scholar

70. D. Lawless, N. Serpone, D. Meisel, J. Phys. Chem. 95 (1991) 5166.10.1021/j100166a047Search in Google Scholar

71. Z. Zhang, J. T. Yates, Chem. Rev. 112 (2012) 5520.10.1021/cr3000626Search in Google Scholar PubMed

72. X. Wang, A. Kafizas, X. Li, S. J. A. Moniz, P. J. T. Reardon, J. Tang, I. P. Parkin, J. R. Durrant, J. Phys. Chem. C 119 (2015) 10439.10.1021/acs.jpcc.5b01858Search in Google Scholar

73. A. O. T. Patrocinio, J. Schneider, M. D. França, L. M. Santos, B. P. Caixeta, A. E. H. Machado, D. W. Bahnemann, RSC Adv. 5 (2015) 70536.10.1039/C5RA13291FSearch in Google Scholar

74. L. Jing, Y. Cao, H. Cui, J. R. Durrant, J. Tang, D. Liu, H. Fu, Chem. Commun. 48 (2012) 10775.10.1039/c2cc34973fSearch in Google Scholar PubMed

75. Y. Cao, L. Jing, X. Shi, Y. Luan, J. R. Durrant, J. Tang, H. Fu, Phys. Chem. Chem. Phys. 14 (2012) 8530.10.1039/c2cp41167aSearch in Google Scholar PubMed

76. S. R. Pendlebury, M. Barroso, A. J. Cowan, K. Sivula, J. Tang, M. Grätzel, D. Klug, J. R. Durrant, Chem. Commun. (Camb). 47 (2011) 716.10.1039/C0CC03627GSearch in Google Scholar

77. M. Barroso, C. A. Mesa, S. R. Pendlebury, A. J. Cowan, T. Hisatomi, K. Sivula, Pnas 109 (2012) 15640.10.1073/pnas.1118326109Search in Google Scholar PubMed PubMed Central

78. I. Bedja, S. Hotchandani, P. V. Kamat, J. Phys. Chem. 97 (1993) 11064.10.1021/j100144a027Search in Google Scholar

79. S. Hotchandani, I. Bedja, R. Fessenden, P. Kamat, Langmuir 10 (1994) 17.10.1021/la00013a600Search in Google Scholar

80. F. M. Pesci, A. J. Cowan, B. D. Alexander, J. R. Durrant, D. R. Klug, J. Phys. Chem. Lett. 2 (2011) 1900.10.1021/jz200839nSearch in Google Scholar

81. N. Aiga, Q. Jia, K. Watanabe, A. Kudo, T. Sugimoto, Y. Matsumoto, J. Phys. Chem. C 117 (2013) 9881.10.1021/jp4013027Search in Google Scholar

82. Y. Ma, S. R. Pendlebury, A. Reynal, F. le Formal, J. R. Durrant, Chem. Sci. 5 (2014) 2964.10.1039/C4SC00469HSearch in Google Scholar

83. J. Schneider, K. Nikitin, M. Wark, D. W. Bahnemann, R. Marschall, Phys. Chem. Chem. Phys. 18 (2016) 10719.10.1039/C5CP07115ASearch in Google Scholar PubMed

84. H. G. Baldovi, F. Albarracin, M. Alvaro, B. Ferrer, H. Garcia, ChemPhysChem. 16 (2015) 2094.10.1002/cphc.201402660Search in Google Scholar PubMed

85. S. Chen, Y. Qi, Q. Ding, Z. Li, J. Cui, F. Zhang, C. Li, J. Catal. 339 (2016) 77.10.1016/j.jcat.2016.03.024Search in Google Scholar

86. T. Mavric, M. Valant, M. Forster, A. J. Cowan, U. Lavrencic, S. Emin, J. Colloid Interface Sci. 483 (2016) 93.10.1016/j.jcis.2016.08.019Search in Google Scholar PubMed

87. J. Tang, J. R. Durrant, D. R. Klug, J. Am. Chem. Soc. 130 (2008) 13885.10.1021/ja8034637Search in Google Scholar PubMed

88. F. Le Formal, E. Pastor, S. D. Tilley, C. A. Mesa, S. R. Pendlebury, M. Grätzel, J. R. Durrant, J. Am. Chem. Soc. 137 (2015) 6629.10.1021/jacs.5b02576Search in Google Scholar PubMed PubMed Central

89. N. S. Lewis, D. G. Nocera, Proc. Natl. Acad. Sci. 103 (2006) 15729.10.1073/pnas.0603395103Search in Google Scholar PubMed PubMed Central

90. P. Liao, J. A. Keith, E. A. Carter, J. Am. Chem. Soc. 134 (2012) 13296.10.1021/ja301567fSearch in Google Scholar PubMed

91. S. C. Warren, K. Voïtchovsky, H. Dotan, C. M. Leroy, M. Cornuz, F. Stellacci, C. Hébert, A. Rothschild, M. Grätzel, Nat. Mater. 12 (2013) 842.10.1038/nmat3684Search in Google Scholar PubMed

92. K. G. Upul Wijayantha, S. Saremi-Yarahmadi, L. M. Peter, Phys. Chem. Chem. Phys. 13 (2011) 5264.10.1039/c0cp02408bSearch in Google Scholar PubMed

93. V. Cristino, S. Marinello, A. Molinari, S. Caramori, S. Carli, R. Boaretto, R. Argazzi, L. Meda, C. A. Bignozzi, J. Mater. Chem. A 0 (2016) 1.Search in Google Scholar

94. J. Zhang, Y. Nosaka, J. Phys. Chem. C 117 (2013) 1383.10.1021/jp3105166Search in Google Scholar

95. J. Zhang, Y. Nosaka, J. Phys. Chem. C 118 (2014) 10824.10.1021/jp501214mSearch in Google Scholar

96. M. Barroso, A. J. Cowan, S. R. Pendlebury, M. Grätzel, D. R. Klug, J. R. Durrant, J. Am. Chem. Soc. 133 (2011) 14868.10.1021/ja205325vSearch in Google Scholar PubMed

97. Y. Ma, F. Le Formal, A. Kafizas, S. R. Pendlebury, J. R. Durrant, J. Mater. Chem. A 3 (2015) 20649.10.1039/C5TA05826KSearch in Google Scholar PubMed PubMed Central

98. A. Yamakata, M. Kawaguchi, N. Nishimura, T. Minegishi, J. Kubota, K. Domen, J. Phys. Chem. C 118 (2014) 23897.10.1021/jp508233zSearch in Google Scholar

99. H. Otsuka, K. Kim, A. Kouzu, I. Takimoto, H. Fujimori, Y. Sakata, Chem. Lett. 34 (2005) 822.10.1246/cl.2005.822Search in Google Scholar

100. A. Mukherji, C.-H. Sun, S. C. Smith, G.-Q. Q. Lu, L.-Z. Wang, J. Phys. Chem. C 115 (2011) 15674.10.1021/jp202783tSearch in Google Scholar

101. T. Kobayashi, Solid State Commun. 33 (1980) 95.10.1016/0038-1098(80)90704-8Search in Google Scholar

102. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306 (2004) 666.10.1126/science.1102896Search in Google Scholar PubMed

103. S. Gilje, R. B. Kaner, G. G. Wallace, D. A. N. Li, M. B. Mu, M. B. Muller, S. Gilje, R. B. Kaner, G. G. Wallace, Nat. Nanotechnol. 3 (2008) 101.10.1038/nnano.2007.451Search in Google Scholar PubMed

104. M. De Miguel, M. Aílvaro, H. García, Langmuir 28 (2012) 2849.10.1021/la204023wSearch in Google Scholar PubMed

105. P. Atienzar, A. Primo, C. Lavorato, R. Molinari, H. García, Langmuir 29 (2013) 6141.10.1021/la400618sSearch in Google Scholar PubMed

106. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, Li, ACS Nano 4 (2010) 380.10.1021/nn901221kSearch in Google Scholar PubMed

Received: 2018-02-01
Accepted: 2018-03-08
Published Online: 2018-06-16
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Preface
  3. Congratulations to Alexander Eychmüller
  4. Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
  5. Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
  6. Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
  7. Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
  8. TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
  9. Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
  10. Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
  11. Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
  12. Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
  13. Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
  14. Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
  15. Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
  16. Towards Low-Toxic Colloidal Quantum Dots
  17. Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
  18. Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
  19. Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
  20. Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
  21. Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
  22. Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
  23. n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
  24. The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
  25. Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
  26. Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
  27. Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
  28. Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
  29. Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
  30. Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
  31. Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
  32. Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
  33. Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
  34. Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
  35. Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
  36. Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System
Downloaded on 6.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1137/html
Scroll to top button