Abstract
Using density functional theory (DFT), noncovalent interactions and four mechanisms of covalent functionalization of melphalan anticancer drug onto γ-Fe2O3 nanoparticles have been studied. Quantum molecular descriptors of noncovalent configurations were investigated. It was specified that binding of melphalan onto γ-Fe2O3 nanoparticles is thermodynamically suitable. Hardness and the gap of energy between LUMO and HOMO of melphalan are higher than the noncovalent configurations, showing the reactivity of drug increases in the presence of γ-Fe2O3 nanoparticles. Melphalan can bond to γ-Fe2O3 nanoparticles through NH2 (k1 mechanism), OH (k2 mechanism), C=O (k3 mechanism) and Cl (k4 mechanism) groups. The activation energies, the activation enthalpies and the activation Gibbs free energies of these reactions were calculated. Thermodynamic data indicate that k3 mechanism is exothermic and spontaneous and can take place at room temperature. These results could be generalized to other similar drugs.
Acknowledgements
We thank the Research Centre for Animal Development Applied Biology for allocation of computer time.
References
1. G. D. Pennock, W. S. Dalton, W. R. Roeske, C. P. Appleton, K. Mosley, P. Plezia, T. P. Miller, S. E. Salmon, J. Natl. Cancer Inst. 83 (1991) 105.10.1093/jnci/83.2.105Suche in Google Scholar
2. C. Lindley, J. S. McCune, T. E. Thomason, D. Lauder, A. Sauls, S. Adkins, W. T. Sawyer, Cancer Pract. 7 (1999) 59.10.1046/j.1523-5394.1999.07205.xSuche in Google Scholar
3. T. Iwamoto, Biol. Pharm. Bull. 36 (2013) 715.10.1248/bpb.b12-01102Suche in Google Scholar
4. R. H. Mathijssen, A. Sparreboom, J. Verweij, Nat. Rev. Clin. Oncol. 11 (2014) 272.10.1038/nrclinonc.2014.40Suche in Google Scholar
5. A. H. Lu, E. e. L. Salabas, F. Schüth, Angew. Chem. Int. Ed. 46 (2007) 1222.10.1002/anie.200602866Suche in Google Scholar
6. Y.-W. Jun, J.-W. Seo, J. Cheon, Acc. Chem. Res. 41 (2008) 179.10.1021/ar700121fSuche in Google Scholar
7. S. Dutz, R. Hergt, J. Mürbe, J. Töpfer, R. Müller, M. Zeisberger, W. Andrä, M. Bellemann, Z. Phys. Chem. 220 (2006) 145.10.1524/zpch.2006.220.2.145Suche in Google Scholar
8. Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson, J. Phys. D: Appl. Phys. 36 (2003) R167.10.1088/0022-3727/36/13/201Suche in Google Scholar
9. C. C. Berry, A. S. Curtis, J. Phys. D: Appl. Phys. 36 (2003) R198.10.1088/0022-3727/36/13/203Suche in Google Scholar
10. M. Arruebo, R. Fernández-Pacheco, M. R. Ibarra, J. Santamaría, Nano Today 2 (2007) 22.10.1016/S1748-0132(07)70084-1Suche in Google Scholar
11. A. Akbarzadeh, M. Samiei, S. Davaran, Nanoscale Res. Lett. 7 (2012) 144.10.1186/1556-276X-7-144Suche in Google Scholar PubMed PubMed Central
12. A. Dubavik, V. Lesnyak, N. Gaponik, A. Eychmüller, Z. Phys. Chem. 228 (2014) 171.10.1515/zpch-2014-0474Suche in Google Scholar
13. A. Cini, P. Ceci, E. Falvo, D. Gatteschi, M. Fittipaldi, Z. Phys. Chem. 231 (2017) 745.10.1515/zpch-2016-0846Suche in Google Scholar
14. C. Fang, M. Zhang, J. Mater. Chem. 19 (2009) 6258.10.1039/b902182eSuche in Google Scholar PubMed PubMed Central
15. G.-B. Ding, H.-Y. Liu, Y. Wang, Y.-Y. Lü, Y. Wu, Y. Guo, L. Xu, Chem. Res. Chin. Univ. 29 (2013) 103.10.1007/s40242-013-2134-7Suche in Google Scholar
16. M. Schwalbe, N. Buske, M. Vetterlein, K. Höffken, K. Pachmann, J. Clement, Z. Phys. Chem. 220 (2006) 125.10.1524/zpch.2006.220.1.125Suche in Google Scholar
17. V. Schneider, A. Reinholdt, U. Kreibig, T. Weirich, G. Güntherodt, B. Beschoten, A. Tillmanns, H. Krenn, K. Rumpf, P. Granitzer, Z. Phys. Chem. 220 (2006) 173.10.1524/zpch.2006.220.2.173Suche in Google Scholar
18. S. Mornet, S. Vasseur, F. Grasset, E. Duguet, J. Mater. Chem. 14 (2004) 2161.10.1039/b402025aSuche in Google Scholar
19. A. Ito, M. Shinkai, H. Honda, T. Kobayashi, J. Biosci. Bioeng. 100 (2005) 1.10.1263/jbb.100.1Suche in Google Scholar PubMed
20. J. Dobson, Drug Dev. Res. 67 (2006) 55.10.1002/ddr.20067Suche in Google Scholar
21. M. Namdeo, S. Saxena, R. Tankhiwale, M. Bajpai, Y. Mohan, S. Bajpai, J. Nanosci. Nanotechnol. 8 (2008) 3247.10.1166/jnn.2008.399Suche in Google Scholar PubMed
22. G. Buntkowsky, K. Ivanov, H.-M. Vieth, Z. Phys. Chem. 231 (2017) 167.10.1515/zpch-2016-5006Suche in Google Scholar
23. P. Morais, V. Garg, A. Oliveira, L. Silveira, J. Santos, M. Rodrigues, A. Tedesco, ISIAME 2008, Springer, Bucharest (2009), P. 269.10.1007/978-3-642-01370-6_34Suche in Google Scholar
24. M.-Y. Hua, H.-L. Liu, H.-W. Yang, P.-Y. Chen, R.-Y. Tsai, C.-Y. Huang, I.-C. Tseng, L.-A. Lyu, C.-C. Ma, H.-J. Tang, Biomaterials 32 (2011) 516.10.1016/j.biomaterials.2010.09.065Suche in Google Scholar PubMed
25. H. Kempe, M. Kempe, Biomaterials 31 (2010) 9499.10.1016/j.biomaterials.2010.07.107Suche in Google Scholar PubMed
26. A. Priprem, P. Mahakunakorn, C. Thomas, I. Thomas, Am. J. Nanotechnol. 1 (2010) 78.Suche in Google Scholar
27. M. Mahmoudi, H. Hofmann, B. Rothen-Rutishauser, A. Petri-Fink, Chem. Rev. 112 (2011) 2323.10.1021/cr2002596Suche in Google Scholar PubMed
28. L. Gu, R. H. Fang, M. J. Sailor, J.-H. Park, ACS Nano. 6 (2012) 4947.10.1021/nn300456zSuche in Google Scholar PubMed PubMed Central
29. T. K. Jain, M. K. Reddy, M. A. Morales, D. L. Leslie-Pelecky, V. Labhasetwar, Mol. Pharm. 5 (2008) 316.10.1021/mp7001285Suche in Google Scholar PubMed
30. L. K. Limbach, P. Wick, P. Manser, R. N. Grass, A. Bruinink, W. J. Stark, Environ. Sci. Technol. 41 (2007) 4158.10.1021/es062629tSuche in Google Scholar PubMed
31. M. E. Horowitz, E. Etcubanas, M. Christensen, J. A. Houghton, S. George, A. Green, P. Houghton, J. Clin. Oncol. 6 (1988) 308.10.1200/JCO.1988.6.2.308Suche in Google Scholar PubMed
32. T. Facon, J. Y. Mary, C. Hulin, L. Benboubker, M. Attal, B. Pegourie, M. Renaud, J. L. Harousseau, G. Guillerm, C. Chaleteix, Lancet 370 (2007) 1209.10.1016/S0140-6736(07)61537-2Suche in Google Scholar
33. Y. B. Zheng, B. Kiraly, T. J. Huang, Nanomedicine 5 (2010) 1309.10.2217/nnm.10.111Suche in Google Scholar PubMed
34. V. Linko, A. Ora, M. A. Kostiainen, Trends Biotechnol. 33 (2015) 586.10.1016/j.tibtech.2015.08.001Suche in Google Scholar PubMed
35. W. Szymański, J. M. Beierle, H. A. Kistemaker, W. A. Velema, B. L. Feringa, Chem. Rev. 113 (2013) 6114.10.1021/cr300179fSuche in Google Scholar PubMed
36. A. D. Becke, Phys. Rev. A 38 (1988) 3098.10.1103/PhysRevA.38.3098Suche in Google Scholar PubMed
37. A. D. Becke, J. Chem. Phys. 98 (1993) 5648.10.1063/1.464913Suche in Google Scholar
38. C. Lee, W. Yang, R. G. Parr, Phy. Rev. B 37 (1988) 785.10.1103/PhysRevB.37.785Suche in Google Scholar
39. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Wallingford, CT (2009).Suche in Google Scholar
40. S. Hooman Vahidi, A. Morsali, S. Ali Beyramabadi, Comp. Theor. Chem. 994 (2012) 41.10.1016/j.comptc.2012.06.010Suche in Google Scholar
41. A. Akbari, F. Hoseinzade, A. Morsali, S. Ali Beyramabadi, Inorg. Chim. Acta 394 (2013) 423.10.1016/j.ica.2012.09.003Suche in Google Scholar
42. A. Morsali, F. Hoseinzade, A. Akbari, S. A. Beyramabadi, R. Ghiasi, J. Solution Chem. 42 (2013) 1902.10.1007/s10953-013-0092-9Suche in Google Scholar
43. S. Mohseni, M. Bakavoli, A. Morsali, Prog. React. Kinet. Mec. 39 (2014) 89.10.3184/97809059274714X13874723178403Suche in Google Scholar
44. S. A. Beyramabadi, H. Eshtiagh-Hosseini, M. R. Housaindokht, A. Morsali, Organometallics 27 (2007) 72.10.1021/om700445jSuche in Google Scholar
45. A. Gharib, A. Morsali, S. Beyramabadi, H. Chegini, M. N. Ardabili, Prog. React. Kinet. Mec. 39 (2014) 354.10.3184/146867814X14119972226966Suche in Google Scholar
46. A. Morsali, Int. J. Chem. Kinet. 47 (2015) 73.10.1002/kin.20893Suche in Google Scholar
47. M. N. Ardabili, A. Morsali, S. A. Beyramabadi, H. Chegini, A. Gharib, Res. Chem. Intermed. 41 (2015) 5389.10.1007/s11164-014-1640-7Suche in Google Scholar
48. R. Cammi, J. Tomasi, J. Comput. Chem. 16 (1995) 1449.10.1002/jcc.540161202Suche in Google Scholar
49. J. Tomasi, M. Persico, Chem. Rev. 94 (1994) 2027.10.1021/cr00031a013Suche in Google Scholar
50. L. Jayarathne, W. Ng, A. Bandara, M. Vitanage, C. Dissanayake, R. Weerasooriya, Colloids Surf. 403 (2012) 96.10.1016/j.colsurfa.2012.03.061Suche in Google Scholar
51. M. Galli, A. Guerrini, S. Cauteruccio, P. Thakare, D. Dova, F. Orsini, P. Arosio, C. Carrara, C. Sangregorio, A. Lascialfari, RSC Adv. 7 (2017) 15500.10.1039/C7RA00519ASuche in Google Scholar
52. K. V. Korpany, C. Mottillo, J. Bachelder, S. N. Cross, P. Dong, S. Trudel, T. Friščić, A. S. Blum, Chem. Commun. 52 (2016) 3054.10.1039/C5CC07107KSuche in Google Scholar
53. F. Herranz, M. Morales, A. G. Roca, R. Vilar, J. Ruiz-Cabello, Contrast Media Mol. Imaging 3 (2008) 215.10.1002/cmmi.254Suche in Google Scholar PubMed
54. M. Teymoori, A. Morsali, M. R. Bozorgmehr, S. A. Beyramabadi, Bull. Korean Chem. Soc. 38 (2017) 869.10.1002/bkcs.11187Suche in Google Scholar
Supplemental Material:
The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2017-0995).
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- The Electronic Structure Signature of the Spin Cross-Over Transition of [Co(dpzca)2]
- Thermal Degradation of Complexes Derived from Cu (II) Groundnut (Arachis hypogaea) and Sesame (Sesamum indicum) Soaps
- Effect of Mesoporous Diatomite Particles on the Kinetics of SR&NI ATRP of Styrene and Butyl Acrylate
- Removal of Hexavalent Chromium by Adsorption on Microwave Assisted Activated Carbon Prepared from Stems of Leucas Aspera
- Removal of Acid Yellow 17 Dye by Fenton Oxidation Process
- The Efficient Removal of Heavy Metal Ions from Industry Effluents Using Waste Biomass as Low-Cost Adsorbent: Thermodynamic and Kinetic Models
- Degradation of Acetaminophen in Aqueous Media by H2O2 Assisted Gamma Irradiation Process
- M(Al,Ni)-TiO2-Based Photoanode for Photoelectrochemical Solar Cells
- Quantum Mechanical Study of γ-Fe2O3 Nanoparticle as a Nanocarrier for Anticancer Drug Delivery
- Corrigendum
- Corrigendum to: Green Synthesis of CoFe2O4 and Investigation of its Catalytic Efficiency for Degradation of Dyes in Aqueous Medium
Artikel in diesem Heft
- Frontmatter
- The Electronic Structure Signature of the Spin Cross-Over Transition of [Co(dpzca)2]
- Thermal Degradation of Complexes Derived from Cu (II) Groundnut (Arachis hypogaea) and Sesame (Sesamum indicum) Soaps
- Effect of Mesoporous Diatomite Particles on the Kinetics of SR&NI ATRP of Styrene and Butyl Acrylate
- Removal of Hexavalent Chromium by Adsorption on Microwave Assisted Activated Carbon Prepared from Stems of Leucas Aspera
- Removal of Acid Yellow 17 Dye by Fenton Oxidation Process
- The Efficient Removal of Heavy Metal Ions from Industry Effluents Using Waste Biomass as Low-Cost Adsorbent: Thermodynamic and Kinetic Models
- Degradation of Acetaminophen in Aqueous Media by H2O2 Assisted Gamma Irradiation Process
- M(Al,Ni)-TiO2-Based Photoanode for Photoelectrochemical Solar Cells
- Quantum Mechanical Study of γ-Fe2O3 Nanoparticle as a Nanocarrier for Anticancer Drug Delivery
- Corrigendum
- Corrigendum to: Green Synthesis of CoFe2O4 and Investigation of its Catalytic Efficiency for Degradation of Dyes in Aqueous Medium