Startseite Quantum Mechanical Study of γ-Fe2O3 Nanoparticle as a Nanocarrier for Anticancer Drug Delivery
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Quantum Mechanical Study of γ-Fe2O3 Nanoparticle as a Nanocarrier for Anticancer Drug Delivery

  • Hadi Lari , Ali Morsali EMAIL logo und Mohammad Momen Heravi
Veröffentlicht/Copyright: 26. Januar 2018

Abstract

Using density functional theory (DFT), noncovalent interactions and four mechanisms of covalent functionalization of melphalan anticancer drug onto γ-Fe2O3 nanoparticles have been studied. Quantum molecular descriptors of noncovalent configurations were investigated. It was specified that binding of melphalan onto γ-Fe2O3 nanoparticles is thermodynamically suitable. Hardness and the gap of energy between LUMO and HOMO of melphalan are higher than the noncovalent configurations, showing the reactivity of drug increases in the presence of γ-Fe2O3 nanoparticles. Melphalan can bond to γ-Fe2O3 nanoparticles through NH2 (k1 mechanism), OH (k2 mechanism), C=O (k3 mechanism) and Cl (k4 mechanism) groups. The activation energies, the activation enthalpies and the activation Gibbs free energies of these reactions were calculated. Thermodynamic data indicate that k3 mechanism is exothermic and spontaneous and can take place at room temperature. These results could be generalized to other similar drugs.

Acknowledgements

We thank the Research Centre for Animal Development Applied Biology for allocation of computer time.

References

1. G. D. Pennock, W. S. Dalton, W. R. Roeske, C. P. Appleton, K. Mosley, P. Plezia, T. P. Miller, S. E. Salmon, J. Natl. Cancer Inst. 83 (1991) 105.10.1093/jnci/83.2.105Suche in Google Scholar

2. C. Lindley, J. S. McCune, T. E. Thomason, D. Lauder, A. Sauls, S. Adkins, W. T. Sawyer, Cancer Pract. 7 (1999) 59.10.1046/j.1523-5394.1999.07205.xSuche in Google Scholar

3. T. Iwamoto, Biol. Pharm. Bull. 36 (2013) 715.10.1248/bpb.b12-01102Suche in Google Scholar

4. R. H. Mathijssen, A. Sparreboom, J. Verweij, Nat. Rev. Clin. Oncol. 11 (2014) 272.10.1038/nrclinonc.2014.40Suche in Google Scholar

5. A. H. Lu, E. e. L. Salabas, F. Schüth, Angew. Chem. Int. Ed. 46 (2007) 1222.10.1002/anie.200602866Suche in Google Scholar

6. Y.-W. Jun, J.-W. Seo, J. Cheon, Acc. Chem. Res. 41 (2008) 179.10.1021/ar700121fSuche in Google Scholar

7. S. Dutz, R. Hergt, J. Mürbe, J. Töpfer, R. Müller, M. Zeisberger, W. Andrä, M. Bellemann, Z. Phys. Chem. 220 (2006) 145.10.1524/zpch.2006.220.2.145Suche in Google Scholar

8. Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson, J. Phys. D: Appl. Phys. 36 (2003) R167.10.1088/0022-3727/36/13/201Suche in Google Scholar

9. C. C. Berry, A. S. Curtis, J. Phys. D: Appl. Phys. 36 (2003) R198.10.1088/0022-3727/36/13/203Suche in Google Scholar

10. M. Arruebo, R. Fernández-Pacheco, M. R. Ibarra, J. Santamaría, Nano Today 2 (2007) 22.10.1016/S1748-0132(07)70084-1Suche in Google Scholar

11. A. Akbarzadeh, M. Samiei, S. Davaran, Nanoscale Res. Lett. 7 (2012) 144.10.1186/1556-276X-7-144Suche in Google Scholar PubMed PubMed Central

12. A. Dubavik, V. Lesnyak, N. Gaponik, A. Eychmüller, Z. Phys. Chem. 228 (2014) 171.10.1515/zpch-2014-0474Suche in Google Scholar

13. A. Cini, P. Ceci, E. Falvo, D. Gatteschi, M. Fittipaldi, Z. Phys. Chem. 231 (2017) 745.10.1515/zpch-2016-0846Suche in Google Scholar

14. C. Fang, M. Zhang, J. Mater. Chem. 19 (2009) 6258.10.1039/b902182eSuche in Google Scholar PubMed PubMed Central

15. G.-B. Ding, H.-Y. Liu, Y. Wang, Y.-Y. Lü, Y. Wu, Y. Guo, L. Xu, Chem. Res. Chin. Univ. 29 (2013) 103.10.1007/s40242-013-2134-7Suche in Google Scholar

16. M. Schwalbe, N. Buske, M. Vetterlein, K. Höffken, K. Pachmann, J. Clement, Z. Phys. Chem. 220 (2006) 125.10.1524/zpch.2006.220.1.125Suche in Google Scholar

17. V. Schneider, A. Reinholdt, U. Kreibig, T. Weirich, G. Güntherodt, B. Beschoten, A. Tillmanns, H. Krenn, K. Rumpf, P. Granitzer, Z. Phys. Chem. 220 (2006) 173.10.1524/zpch.2006.220.2.173Suche in Google Scholar

18. S. Mornet, S. Vasseur, F. Grasset, E. Duguet, J. Mater. Chem. 14 (2004) 2161.10.1039/b402025aSuche in Google Scholar

19. A. Ito, M. Shinkai, H. Honda, T. Kobayashi, J. Biosci. Bioeng. 100 (2005) 1.10.1263/jbb.100.1Suche in Google Scholar PubMed

20. J. Dobson, Drug Dev. Res. 67 (2006) 55.10.1002/ddr.20067Suche in Google Scholar

21. M. Namdeo, S. Saxena, R. Tankhiwale, M. Bajpai, Y. Mohan, S. Bajpai, J. Nanosci. Nanotechnol. 8 (2008) 3247.10.1166/jnn.2008.399Suche in Google Scholar PubMed

22. G. Buntkowsky, K. Ivanov, H.-M. Vieth, Z. Phys. Chem. 231 (2017) 167.10.1515/zpch-2016-5006Suche in Google Scholar

23. P. Morais, V. Garg, A. Oliveira, L. Silveira, J. Santos, M. Rodrigues, A. Tedesco, ISIAME 2008, Springer, Bucharest (2009), P. 269.10.1007/978-3-642-01370-6_34Suche in Google Scholar

24. M.-Y. Hua, H.-L. Liu, H.-W. Yang, P.-Y. Chen, R.-Y. Tsai, C.-Y. Huang, I.-C. Tseng, L.-A. Lyu, C.-C. Ma, H.-J. Tang, Biomaterials 32 (2011) 516.10.1016/j.biomaterials.2010.09.065Suche in Google Scholar PubMed

25. H. Kempe, M. Kempe, Biomaterials 31 (2010) 9499.10.1016/j.biomaterials.2010.07.107Suche in Google Scholar PubMed

26. A. Priprem, P. Mahakunakorn, C. Thomas, I. Thomas, Am. J. Nanotechnol. 1 (2010) 78.Suche in Google Scholar

27. M. Mahmoudi, H. Hofmann, B. Rothen-Rutishauser, A. Petri-Fink, Chem. Rev. 112 (2011) 2323.10.1021/cr2002596Suche in Google Scholar PubMed

28. L. Gu, R. H. Fang, M. J. Sailor, J.-H. Park, ACS Nano. 6 (2012) 4947.10.1021/nn300456zSuche in Google Scholar PubMed PubMed Central

29. T. K. Jain, M. K. Reddy, M. A. Morales, D. L. Leslie-Pelecky, V. Labhasetwar, Mol. Pharm. 5 (2008) 316.10.1021/mp7001285Suche in Google Scholar PubMed

30. L. K. Limbach, P. Wick, P. Manser, R. N. Grass, A. Bruinink, W. J. Stark, Environ. Sci. Technol. 41 (2007) 4158.10.1021/es062629tSuche in Google Scholar PubMed

31. M. E. Horowitz, E. Etcubanas, M. Christensen, J. A. Houghton, S. George, A. Green, P. Houghton, J. Clin. Oncol. 6 (1988) 308.10.1200/JCO.1988.6.2.308Suche in Google Scholar PubMed

32. T. Facon, J. Y. Mary, C. Hulin, L. Benboubker, M. Attal, B. Pegourie, M. Renaud, J. L. Harousseau, G. Guillerm, C. Chaleteix, Lancet 370 (2007) 1209.10.1016/S0140-6736(07)61537-2Suche in Google Scholar

33. Y. B. Zheng, B. Kiraly, T. J. Huang, Nanomedicine 5 (2010) 1309.10.2217/nnm.10.111Suche in Google Scholar PubMed

34. V. Linko, A. Ora, M. A. Kostiainen, Trends Biotechnol. 33 (2015) 586.10.1016/j.tibtech.2015.08.001Suche in Google Scholar PubMed

35. W. Szymański, J. M. Beierle, H. A. Kistemaker, W. A. Velema, B. L. Feringa, Chem. Rev. 113 (2013) 6114.10.1021/cr300179fSuche in Google Scholar PubMed

36. A. D. Becke, Phys. Rev. A 38 (1988) 3098.10.1103/PhysRevA.38.3098Suche in Google Scholar PubMed

37. A. D. Becke, J. Chem. Phys. 98 (1993) 5648.10.1063/1.464913Suche in Google Scholar

38. C. Lee, W. Yang, R. G. Parr, Phy. Rev. B 37 (1988) 785.10.1103/PhysRevB.37.785Suche in Google Scholar

39. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Wallingford, CT (2009).Suche in Google Scholar

40. S. Hooman Vahidi, A. Morsali, S. Ali Beyramabadi, Comp. Theor. Chem. 994 (2012) 41.10.1016/j.comptc.2012.06.010Suche in Google Scholar

41. A. Akbari, F. Hoseinzade, A. Morsali, S. Ali Beyramabadi, Inorg. Chim. Acta 394 (2013) 423.10.1016/j.ica.2012.09.003Suche in Google Scholar

42. A. Morsali, F. Hoseinzade, A. Akbari, S. A. Beyramabadi, R. Ghiasi, J. Solution Chem. 42 (2013) 1902.10.1007/s10953-013-0092-9Suche in Google Scholar

43. S. Mohseni, M. Bakavoli, A. Morsali, Prog. React. Kinet. Mec. 39 (2014) 89.10.3184/97809059274714X13874723178403Suche in Google Scholar

44. S. A. Beyramabadi, H. Eshtiagh-Hosseini, M. R. Housaindokht, A. Morsali, Organometallics 27 (2007) 72.10.1021/om700445jSuche in Google Scholar

45. A. Gharib, A. Morsali, S. Beyramabadi, H. Chegini, M. N. Ardabili, Prog. React. Kinet. Mec. 39 (2014) 354.10.3184/146867814X14119972226966Suche in Google Scholar

46. A. Morsali, Int. J. Chem. Kinet. 47 (2015) 73.10.1002/kin.20893Suche in Google Scholar

47. M. N. Ardabili, A. Morsali, S. A. Beyramabadi, H. Chegini, A. Gharib, Res. Chem. Intermed. 41 (2015) 5389.10.1007/s11164-014-1640-7Suche in Google Scholar

48. R. Cammi, J. Tomasi, J. Comput. Chem. 16 (1995) 1449.10.1002/jcc.540161202Suche in Google Scholar

49. J. Tomasi, M. Persico, Chem. Rev. 94 (1994) 2027.10.1021/cr00031a013Suche in Google Scholar

50. L. Jayarathne, W. Ng, A. Bandara, M. Vitanage, C. Dissanayake, R. Weerasooriya, Colloids Surf. 403 (2012) 96.10.1016/j.colsurfa.2012.03.061Suche in Google Scholar

51. M. Galli, A. Guerrini, S. Cauteruccio, P. Thakare, D. Dova, F. Orsini, P. Arosio, C. Carrara, C. Sangregorio, A. Lascialfari, RSC Adv. 7 (2017) 15500.10.1039/C7RA00519ASuche in Google Scholar

52. K. V. Korpany, C. Mottillo, J. Bachelder, S. N. Cross, P. Dong, S. Trudel, T. Friščić, A. S. Blum, Chem. Commun. 52 (2016) 3054.10.1039/C5CC07107KSuche in Google Scholar

53. F. Herranz, M. Morales, A. G. Roca, R. Vilar, J. Ruiz-Cabello, Contrast Media Mol. Imaging 3 (2008) 215.10.1002/cmmi.254Suche in Google Scholar PubMed

54. M. Teymoori, A. Morsali, M. R. Bozorgmehr, S. A. Beyramabadi, Bull. Korean Chem. Soc. 38 (2017) 869.10.1002/bkcs.11187Suche in Google Scholar


Supplemental Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2017-0995).


Received: 2017-6-7
Accepted: 2017-12-19
Published Online: 2018-1-26
Published in Print: 2018-5-24

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2017-0995/html
Button zum nach oben scrollen